-*- julia-snail-extensions: (ob-julia) -*-
#+TITLE: Zero to Julia (with AD)
#+AUTHOR: Kiran Shila

#+STARTUP: Tlatexpreview

* Hello

- I'm Kiran
+ EE PhD Student
+ Radio Astronomy
+ Programming Language Enthusiast

* why learn a new language

- What are the requirements for scientific computing?
+ Fast
+ Iterable
+ Generic

* Intro to Julia
*% what is Julia?
Julia is a high-level, high-performance, dynamic programming Tanguage.

while it is a general-purpose language and can be used to write any _
application, most of its features are well suited for numerical analysis
and computational science.

*% The REPL

Open REPL, showcase
- REPL modes, Pkg, Shell, Help
- Primitives
+ numbers, complex, rationals
- Strings, Characters
- Blocks, for, while, if
- Function syntax
- Struct syntax
+ generics
- Macros
+ Show, Benchmark

** Multiple Dispatch and Philosophy

The most powerful tool you have

A11 named functions are generic

Functions are things you *do* to data, the data doesn't define it.

“*% Yes, but what is it?

$f = x+y$ is an abstract function of two variables. The behavior of this
function s

dependent of what x and y are.

Multiple dispatch is a run-time feature that specializes a function call

based _ _
on the entire call signature.

** Unreasonable Effectiveness, an Example
Multiple dispatch maximizes code sharing

Code reuse comes in two forms:
- Types (Shared across packages)
- Algorithms (Applied across types)

Both stem from MD
** bUt YOURe DeScriBing FunCtIOn OveRLoaD1inG

Are you sure?
#+begin_src c++
class Pet {
public:

string name;

string meets(Pet a, Pet b) { return "FALLBACK"; }

void encounter(Pet a, Pet b) {
string verb = meets(a, b);
cout << a.name << " meets

<< b.name << and " << verb << endl;

#+end_src
** bUt YOURe DeScriBing FunCtIOn OveRLoaD1inG

#+begin_src c++
class Dog : public Pet {};
class Cat : public pPet {};

return "sniffs";
return "chases"
return "hisses"
return "slinks";

string meets(Dog a, Dog b)
string meets(Dog a, Cat b)
string meets(Cat a, Dog b)
string meets(Cat a, Cat b)
#+end_src

A

; }
; 1
; 1
; 1

** bUt YOURe DeScriBing FunCtIOn OveRLoaD1inG

#+begin_src c++
int main() {

Dog fido; fido.name = "Fido";

Dog rex; rex.name = "Rex";

Cat whiskers; whiskers.name = "whiskers";
Cat spots; spots.name = "Spots";

encounter(fido, rex);
encounter(fido, whiskers);
encounter(whisters, rex);
encounter(whisterks, spots);
return 0;

#+end_src

** Any Guesses?

** Any Guesses?

=clang++ pets.cxx -o pets & & ./pets=
#+begin_src

Fido meets Rex and FALLBACK

Fido meets Whiskers and FALLBACK
whiskers meets Rex and FALLBACK
whiskers meets Spots and FALLBACK
#+end_src

C++ solves this statically with templates, no RTTI solution

*% RGB and Sharing Types

Say you have a type that holds an RBG color value, =RGB=.

The package that includes this type has basic operations that make sense
ggtﬁgﬁ. How do you add functionality?

** RGB in Julia

You just add the method. _
This works on existing operations

#+begin_src julia
Base.zero(::Type{RGB}) = RGB(0,0,0)
#+end_src

And for writing new ones

#+begin_src julia

dotc(x::RGB, y::RGB) = 0.200*x.r*y.r + 0.771*x.g9*y.g + 0.029*x.b*y.b
#+end_src

*% RGB in *Other Languages*®

How would you do this 1in other Tlanguages? = S

In class-based 00P, methods are *textually inside* the class definition.
The data container 1is declaring what that data is able to do.

*% RGB in *Other Languages*

To add methods, you can

- Edit the class

- Inherit the class

** why is this a problem?

To edit the class you must convince the author it's a good idea (do they
want to

maintain your code?).

%f everyone does that, the class becomes bloated with everyone's fancy
eature.

You can't change it without breaking changes.
** Why is this a problem?

Inheriting is just as bad. _
New name, =MyRGB= 1is semantically different from =RGB=

You *must* have instances of =MyRGB= to use your functionality, not =RGB=
from

elsewhere.

- This 1is kinda solved with dependency injection, but sucks

If you have multiple people's custom types and you want all the features,
you

need multiple inheritance

** Two bad choices

what do people actually do?
- Give up

+ Use =f(x,y)= instead of =x.f(y)=, ruining reuse as this can't be
generic

- No, not even templates fix this as those are static

- bon't share

+ Write your own RGB

+ The most popular option in OOP

** Julia Perspective

In Julia, you can define methods on types whenever you want
Generic functions are namespaced (unlike methods in OOP)

** The "Expression Problem" solved with MD
Can you easily and "correctly" do both

1. pefine *new types* to which *existing operations* apply
a. Easy in 0OOP, hard in FP

2. Define *new operations®* which apply to *existing types*
a. Easy in FP, hard in 0OP

** Not Unique to Julia

- =multipledispatch= in python (opt-in)

- CLOS 1in CL (opt-in, inspiration for Julia, relativley slow)
- ML (started the idea in 1973), C++ didn't invent generics

- Dylan and C# have native support

** The Julia Compiler
How does this work?

[[file:compiler.png]]

** Not Perfect

- Lack of traits
+ What do traits mean if *everything* 1is generic
- Compiler Tlatency, TTFP, warm up, etc.
- Memory consumption
+ Perfectly acceptable for PC or cluster applications
+ Not for mobile, embedded, daemons, etc.
- Julia FFI
+ Massive runtime -> Hard to embed
- Other smaller 1issues
+ Static analysis

+ Ecosystem
+ Stability

* Automatic Differentiation
*** Forward Mode (Dual Numbers)
- Hypercomplex number system from the 19th century

- $a+b\varepsilon$ where a and b are real
6 ε is a (nonzero) symbol that satisfies $\varepsilon A{2} =

“*% Where do derivatives fit in?
Consider an arbitrary nth order polynomial
$P(X) = p_0 + p_1x + p_2xA{2} + \dots + p_nxA{n}$

we can extend the domain of this polynomial from the reals to the duals by
just

\begin{align¥*}

P\Teft(a + b\varepsilon\right) &= p_0 + p_1(\Teft a+b\varepsilon\right) +
\dots + p_n\left(a+b\varepsilon\right)A{n} \\

&= p_{0} + p_{1}a + p_{2}ar{2} + \dots + p_{n}aAr{n} + p_{1}b\varepsilon +
2p_{2%}ab\varepsilon + \dots + np_{n}aAr{n-1}b\varepsilon

\end{align*}

which is exactly equivalent to

$P\left(a\right) + bP'\left(a\right)\varepsilon$
“%% Limit Perspective
\begin{equation*}
f'\left(a\right) = \1i

m_
\varepsilon\right) - f\1
\end{equation*}

{\varepsilon \rightarrow 0} \frac{f\left(a +
eft(a\right)}{\varepsilon}

bual numbers are an algebraic way of expressing the same thing
Assume ε is *just* an infinitesimal, just from algebra
*** pual Numbers (Taylor's Vversion)

\begin{equation*}

f(a+b\varepsilon) = \sum_{n=0}A{\infty}
\frac{fA{(n)}(a)bA{n}\varepsilonA{n}}{n!} = f(a) + bf'(a)\varepsilon
\end{equation*}

“** Free Chain Rule

Again:
\begin{equation*%

f(a+b\varepsilon
\end{equation¥*}

= f(a) + bf'(a)\varepsilon

So if we want $g(f(x))$, we just do the same thing:

\begin{align¥*}

g\left(f(a+b\varepsilon)\right) &= g\left(f(a) + bf'(a)\varepsilon\right)

&= g(f(a)) + bf'(a)g'(f(a))\varepsilon
\end{align*}

Tada! The same algebra on the duals induces the chain rule from function
composition.

**% what about non-polynomials?
We just say the rules for transcendental functions. i.e.
$\sin(a+b\varepsilon) = \sin(a) + b\cos(a)\varepsilon$

*** Math Nerd Zone

- The set of Duals (\mathds{D}) are a topological vector space

- The duals are basically $\mathds{R}A{2}$ made into an algebra by
$(a,b)\cdot(c,d) = (ac,ad+bc)$

© $\mathds{R}A{2}$ is a subset of \mathds{Dp} by a with $a +
O\varepsilon$

**% More Math Nerd zone

- You've got involution (like the complexes)
$\overline{a+b\varepsilon} = a - b\varepsilon$
- Magnitudes
$|a+b\varepsilon| = |al|$
But this gets weird as $|z|A{2} = z\overline{z}$. BUT, $|z| = 0% does not
imply $z=0%
This has some kinda scary consequences as the order matters in certain
calculations. Unlike the reals or complexes, the duals don't form a field.

**% Quick Summary

—fDua] numbers provide an algebraic way of expressing the exact derivative
of a
function at a point _ _
- The algebra perspective yields a first-order model
- Not a showstopper
- Easy to implement

** Implementation

*%% Simple in Julia with MD

Tons of ways to do this

#+begin_src julia

struct bual{T <: Number} <: Number
X::T # Primal
€::T # Tangent

end

Base.show(io::I0, a::Dual) print(io, "$(a.x) + $Ca.e)e")

bual(x::T) where T<:Number bual (x,one(T))

#+end_src

“**% working with other numbers

We need to setup the rules for how Julia knows when to convert/promote
between
numerical types.

For instance

#+begin_src julia
promote_type(Int32,Float64)
#+end_src

“*% promotion Rules
Multiple dispatch handles the combinations

#+begin_src julia
import Base: promote_rule

Promotion between Duals of different inner types

function promote_rule(::Type{bual{T}}, ::Type{Dual{R}}) where {T,R}
3ua1{promote_type(T,R)}

en

Promotion up to dual

function promote_rule(::Type{bual{T}}, ::Type{R}) where {T,R}
Dual{promote_type(T,R)}

end

#+end_src

**% Cconversions

The fact that the promotions exist doesn't imply that we can readily
convert, so
we need functions for that too

#+begin_src julia
import Base: convert

function convert(::Type{bual{T}}, x::Dual) where {T}
g bual (convert(T, x.x), convert(T, X.€))
en

function convert(::Type{bual{T}}, x::Real) where {T}
bual (convert(T, x), zero(T))

end

#+end_src

“*% Rules

#+begin_src julia
import Base: +, -, *, /
Sum Rule

::Dual + b::bual = bual(a.x + b.x, a.€e + b.¢€)
Subtraction Rule

::Dual - b::bual = pbual(a.x - b.x, a.e - b.€)
Product Rule
::Dual * b::bual
Quotient Rule
::bual / b::bual

+end_src

bual(a.x * b.x, a.€ * b.x + b.e * a.x)

bual(a.x / b.x, (b.x * a.e - a.x * b.€) / b.xA2)

a
#
a
#
a
#
a
#

“*% Are we being consistent?

#+begin_src julia
Dual(0,1)
#+end_src

wWe didn't even define what =A= is

#+begin_src julia
Dual(0,1)A2
#+end_src

#+begin_src julia
h(x) = 3*X + 5%xA2
#+end_src

#+begin_src julia
h(10)
#+end_src

#+begin_src julia
h(bual(10,1))
#+end_src

“%*% More rules

#+begin_src julia

import Base: sin,cos
sin(d::bual) pual(sin(d.x),
cos(d::bual) bual(cos(d.x), -d.
#+end_src

* cos(d.x

_))
* sin(d.x))

ook
m m

#+begin_src julia
g(x) = sin(x)A2 + 10cos(3xA5)
#+end_src

#+begin_src julia
g(bual(3.13159))
#+end_src

*** High Order Functions

#+begin_src julia
derivative(f, x::T) where {T<:Number} = f(bual(x, one(T))).€
#+end_src

#+begin_src julia
derivative(sin,3.14159)
#+end_src

*%% Crazy composability (Party Trick)
Let's bring in the Python FFI layer
#+begin_src julia

using SymPy

@syms X
#+end_src

#+begin_src julia

g(x)
#+end_src

#+begin_src julia
derivative(g,x)
#+end_src

**% Upsides and Downsides

- Fast
- Callgraph complexity

#+begin_src julia

big_fn(x) = sin(xA2) / x
#@code_typed big_fn(1.0)
@code_typed big_fn(bual(1.0,1.0))
#+end_src

*% Reverse Mode (Zygote, SSA, Metaprogramming)

- Forward Mode is not the only option _
- Reverse Mode introduces another trade-space (Time for Memory)

**% How Reverse Mode works

- First published in 1976 by Seppo Linnainmaa
- Function is derived in two passes
+ First pass calculates all the intermediate values and stores the
instructions that produced them (Gradient Tape)
h+ Second pass applies the chain rule 1in reverse using the adjoints of
the
operators on the tape and the intermediate values

**% why would you want RM

If yogr function 1is $\mathds{R}IA{N} \rightarrow \mathds{R}A{M}$ where $M
\1T N$,

you only need M "sweeps" to "backpropagate" gradients versus N
"sweeps" 1in

forward mode

Think: Big ML Models

**% Another win for Julia

- Julia uses LLWM for it's "second layer IR"

- LLVM 1is sStatic Single Assignment (SSA)

- Gradient tape for free

- IR -> IR transformation to get easy access to tape for reverse passes
<*% packages

- zygote (Backend for Flux)
- Enzyme (LLVM IR to IR)

** Hybrid Modes

- Both forward and reverse mode are "extremes" _ _
- Finding the minimum number of operations to compute the gradient is the

*Optimal Jacobian Accumulation® problem and is NP-Complete
- New methods everyday (Lots 1in Julia)

* Optimization
** Gradients with Duals

The algebra perspective doesn't let you get gradients as tangents aren't
unique.

There are ways to do it with flags, but the simplest solution here is just
to do all of _ _ _ _
them one at a time in a loop (i.e. not as fast as it could be)

For every parameter of f, we set one to be derived, the rest are
constants.
#+begin_src julia
function gradient(f, xs...)
gs = [] .
for (i, x) in enumerate(xs)
i

1 ==

push!(gs, f(bual(x), xs[2:end]...))

else
dpush!(gs, f(xs[1l:(G-1)]..., bual(x), xs[(i+1):end]...))
en
end
[g.€ for g in gs]
end

gradient(f,xs::Abstractvector) = gradient(f,xs...)
#+end_src

** poes it work?

Yes

#+begin_src julia
f(x,y) = 3x + 10yA2
gradient(f,1,2)
#+end_src

** Gradient Descent
Given some cost function f paramaterized by θ
$\theta_{n+1} = \theta_{n} - \gamma \del f'(\theta_{n})$

Oour simple "update rule" updates the parameters with the negative gradient
times
some "learning rate"

Cconsiderations for
- Cconvergence speed
- Global minima

- etc.

This is the most simple update rule, there are tons more
#+begin_src julia

gd(0,grads,y) = @. 6 - y * grads
#+end_src

** Modeling
#+begin_src julia
strugt Polynomial

end
(m::Polynomial) (x) = sum(xA(i-1)*coeff for (i,coeff) € enumerate(m.8))

Tinear = Polynomial([1.0,2.0])
#+end_src

Broadcasting works
#+begin_src julia
Tinear.(1:10)
#+end_src

Derivatives work
#+begin_src julia
derivative(linear,10)
#+end_src

** Training

If we have some data and we want to fit a model, we want to *update* the
mode]

itself based on some fit error.

Mean squared error 1is typical

#+begin_src julia

mse(y,y”) = sum((y .- y").A2) / Tength(y)

#+end_src

Let's generate some fake data to train on and make sure =mse= works

#+begin_src julia
Xxs = collect(-10:0.1:10)

ys = linear.(xs) .+ 5 .* rand(length(xs))
mse(ys, linear.(xs))
#+end_src

Now, the goal is to minimize this error w.r.t. a model

#+begin_src julia
model = Polynomial(zeros(2))

update(0,grads) = gd(6,grads,0.001)

function train!(model::T,xs,ys,update,cost) where {T}
0_old = model.0
grads = gradient((0...)->cost(ys,T(8).(xs)),06_old)
mode1.0 .= update(6_old,grads)
return cost(ys,model. (xs))

end

#+end_src

#+begin_src julia
train! (model,xs,ys,update,mse)

#+end_src
*%% Generic on Polynomial

#+begin_src julia

model_cubic = Polynomial(zeros(4))

ys_cubic = @. 3xsA3 + 10xsA2 + 7xs + 1 + 500rand()
Smaller learning rate

update_cubic(6,grads) = gd(0,grads,6e-6)

#+end_src

#+begin_src julia
train! (model_cubic,xs,ys_cubic,update_cubic,mse)
#+end_src

*%% Generic on Model

Th}s =train!= function is entirley generic, so as long as we have rules
defined
for the eventual gradient calculation, anything works!

#+begin_src julia
struct Strangemodel

0
end

(m::StrangeModel) (x) = m.0[1]*sin(x) + x*m.B[2] / cos(x)

model_strange = StrangeModel (zeros(2))

ys_strange = @. 0.8*s1n(xs) + 0.2*xs/cos(xs) + rand()
Even smaller learning rate

update_strange(0,grads) = gd(0,grads,4e-4)

#+end_src

#+begin_src julia
train! (model_strange,xs,ys_strange,update_strange,mse)
#+end_src

* Wrap Up

- Learn Julia!
+ Accelerate your scientific computing with generic code
+ Compose with other *fast* Tibraries
+ Differentiate all the things

