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Accretion disk

Gas in the disk follows (almost) Keplerian orbit

Check :

ov VP VP  (nkgT)/r GM

— 4+ (V-V)y=—— -V, ~—P VO, ~——

ot p p nm, p=

GMm,,/r
gravitational force / pressure gradient ~ ~ 500
kgT (1 M_sun BH accretor, T = 10keV, r ~ 100 r_g)
GM .

Therefore, v, =rQg, g = — is a good approximation

Conclusion : disk is differentially rotating with €2 r?
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Angular momentum

For accertion, angular momentum of gas should be removed

h=r’Qr =+/GMr « r'?

oh
Rayleigh stability criterion: 6_ > 0 Keplerian disk satisfies this condition
r

Something should drive dissipative process that makes gas to fall inside

Problem : molecular viscosity is too weak for that

- Shakura & Sunyaev (1973) : turbulence as the source of increased viscosity
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Derivation (high level overview)

vV={(v, Vs V,) vy = rQe =+v/GM/r, v. < Vg V= 0
For a thin disk, it is useful to define 2(r) = dez

- Mass conservation: = — 2nrXy, = const
1o inner disk boundary

M "o where torque vanishes
- Momentum equation with viscosity : V2 = Ew 1l —4/—
T r

alpha-viscosity prescription: v = ac,H = acsz/QK

v _ <V> Amfp <1

_CSH_C H

S

recall) v ~ (V) Ay,

Equating heat production with radiation would determine
thermodynamic properties

B 87rM R3

-

- Energy equation : 3 . GM R, \!/2
Q= -3 .
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Piecewise solutions over three regimes:

a) radiation pressure dominant, electron scattering opacity
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b) P,>P,, 01> o0
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So, what drives turbulence in accretion disks?

Lifelong advice from my undergrad advisor :

In astronomy, if you see something strange,
it’s mostly related to magnetic field...
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Magneto-rotational Instability (MRI)

Balbus & Hawley (1991)
(firstly noticed by Velikhov in 1959)
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Figure 2: Magnetic field line deformation in the MRI instability. For a weak field, the braking of fluid element
a pushed inward and outward acceleration of fluid element b will transfer angular momentum from a to b. The
process continues by further stretching the distance of the two thereby causing an instability.
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Figure 5: Disk scction from a 3D numerical simulation of the MRI instability.

14



Magneto-rotational Instability (MRI)

Balbus & Hawley (1991)
(firstly noticed by Velikhov in 1959)

Figure 2: Magnetic field line deformation in the MRI instability. For a weak field, the braking of fluid element
a pushed inward and outward acceleration of fluid element b will transfer angular momentum from a to b. The
process continues by further stretching the distance of the two thereby causing an instability.

d€2

. Triggered when — < 0
dr

gnetic_Field_magnitude

Figure 5: Disk scction from a 3D numerical simulation of the MRI instability.

14



Magneto-rotational Instability (MRI)

Balbus & Hawley (1991)
(firstly noticed by Velikhov in 1959)

gnetic_Field_magnitude

17

Figure 2: Magnetic field line deformation in the MRI instability. For a weak field, the braking of fluid element
a pushed inward and outward acceleration of fluid element b will transfer angular momentum from a to b. The
process continues by further stretching the distance of the two thereby causing an instability.

dQ
. Triggered when — < 0
dr

Figure 5: Disk scction from a 3D numerical simulation of the MRI instability.

- sensitive to weak magnetic field



Magneto-rotational Instability (MRI)

Balbus & Hawley (1991)
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Figure 2: Magnetic field line deformation in the MRI instability. For a weak field, the braking of fluid element
a pushed inward and outward acceleration of fluid element b will transfer angular momentum from a to b. The
process continues by further stretching the distance of the two thereby causing an instability.

dQ
. Triggered when — < 0
dr

Figure 5: Disk scction from a 3D numerical simulation of the MRI instability.

- sensitive to weak magnetic field
- important (but not the only) physical mechanism driving turbulence on astrophysical disks
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The alpha-disk model still finds its application today
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