
Yoonsoo Kim

Jul 11 2022 @ ARC journal club, Caltech

Shakura-Sunyaev disk



Accretion disk

2



Accretion disk

2

• X-ray binaries

• Active galactic nuclei (AGNs)

• Protoplanetary disks

• Tidal disruption events (TDEs)

• Post-merger remnant of compact binary merger (BH-NS or NS-NS)

• ….



Accretion disk

2

• X-ray binaries

• Active galactic nuclei (AGNs)

• Protoplanetary disks

• Tidal disruption events (TDEs)

• Post-merger remnant of compact binary merger (BH-NS or NS-NS)

• ….

https://en.wikipedia.org/wiki/Accretion_disk https://en.wikipedia.org/wiki/Protoplanetary_disk



Accretion disk

3

Gas in the disk follows (almost) Keplerian orbit

Check : 



Accretion disk

3

Gas in the disk follows (almost) Keplerian orbit

∂v
∂t

+ (v ⋅ ∇)v = −
∇P
ρ

− ∇ΦG

Check : 



Accretion disk

3

Gas in the disk follows (almost) Keplerian orbit

∇P
ρ

∼
(nkBT )/r

nmp
, ∇ΦG ∼

GM
r2

∂v
∂t

+ (v ⋅ ∇)v = −
∇P
ρ

− ∇ΦG

Check : 



Accretion disk

3

Gas in the disk follows (almost) Keplerian orbit

∇P
ρ

∼
(nkBT )/r

nmp
, ∇ΦG ∼

GM
r2

∼
GMmp /r

kBT
gravitational force / pressure gradient

∂v
∂t

+ (v ⋅ ∇)v = −
∇P
ρ

− ∇ΦG

Check : 



Accretion disk

3

Gas in the disk follows (almost) Keplerian orbit

∇P
ρ

∼
(nkBT )/r

nmp
, ∇ΦG ∼

GM
r2

∼
GMmp /r

kBT
gravitational force / pressure gradient ~ 500 

   (1 M_sun BH accretor, T = 10keV, r ~ 100 r_g)

∂v
∂t

+ (v ⋅ ∇)v = −
∇P
ρ

− ∇ΦG

Check : 



Accretion disk

3

Gas in the disk follows (almost) Keplerian orbit

∇P
ρ

∼
(nkBT )/r

nmp
, ∇ΦG ∼

GM
r2

∼
GMmp /r

kBT
gravitational force / pressure gradient ~ 500 

   (1 M_sun BH accretor, T = 10keV, r ~ 100 r_g)

is a good approximationvϕ = rΩK, ΩK =
GM
r3

∂v
∂t

+ (v ⋅ ∇)v = −
∇P
ρ

− ∇ΦG

Therefore,

Check : 



Accretion disk

3

Gas in the disk follows (almost) Keplerian orbit

∇P
ρ

∼
(nkBT )/r

nmp
, ∇ΦG ∼

GM
r2

∼
GMmp /r

kBT
gravitational force / pressure gradient ~ 500 

   (1 M_sun BH accretor, T = 10keV, r ~ 100 r_g)

is a good approximationvϕ = rΩK, ΩK =
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Conclusion : disk is differentially rotating with Ω ∝ r−3/2
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Angular momentum

h = r2ΩK = GMr ∝ r1/2

∂h
∂r

> 0Rayleigh stability criterion: Keplerian disk satisfies this condition

Problem : molecular viscosity is too weak for that

For accertion, angular momentum of gas should be removed

Something should drive dissipative process that makes gas to fall inside

• Shakura & Sunyaev (1973) : turbulence as the source of increased viscosity
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What is it? (what is the paper about?)
• analytic model of thin accretion disk

Assumptions & Properties
• stationary
• axially symmetric
• geometrically thin
• optically thick
• radiation-efficient (all heats are radiated away)
• parametrization of viscous effect with a parameter 

(H ≪ r)

α

Shakura-Sunyaev disk model
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v = (vr, vϕ, vz) vϕ = rΩK = GM/r, vr ≪ vϕ, vz = 0

·M ≡ − 2πrΣvr = const• Mass conservation: 

For a thin disk, it is useful to define Σ(r) = ∫ ρdz

• Momentum equation with viscosity : νΣ =
·M

3π (1 −
r0

r )
alpha-viscosity prescription : ν = αcsH = αc2

s /ΩK

recall) ν ∼ ⟨v⟩λmfp α =
ν

csH
=

⟨v⟩
cs

λmfp

H
≤ 1

 : inner disk boundary 
where torque vanishes

r0

• Energy equation : Equating heat production with radiation would determine 
thermodynamic properties



7



8

Solutions

Piecewise solutions over three regimes:



8

Solutions

a) radiation pressure dominant, electron scattering opacity

Piecewise solutions over three regimes:



9
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b) matter pressure dominant, electron scattering opacity

c) matter pressure dominant, free-free opacity
transition radii mostly dependent on 

the accretion rate
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In astronomy, if you see something strange, 
it’s mostly related to magnetic field…

Lifelong advice from my undergrad advisor :

So, what drives turbulence in accretion disks?
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Magneto-rotational Instability (MRI)

Balbus & Hawley (1991)

• sensitive to weak magnetic field
• important (but not the only) physical mechanism driving turbulence on astrophysical disks

http://personalpages.to.infn.it/~mignone/Plasma_Physics/mri.pdf

(firstly noticed by Velikhov in 1959)

• Triggered when
dΩ
dr

< 0
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‣ The alpha-disk model still finds its application today
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