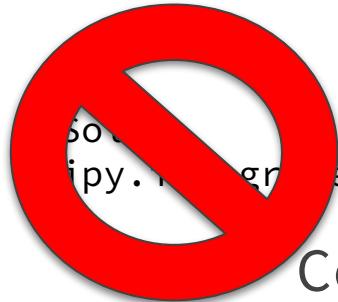


Ingredients for a BBH Simulation

Kyle Nelli

Ingredients



- Formulation of Einstein's Equations
 - ◆ Determines most everything below
- Gauge Choice
- Initial Data
- Boundary Conditions
- Numerical Implementation
- Waveform Extraction

Formulation of Einstein's Equations

What is a BBH simulation at its core?

$$R_{\mu\nu} - \frac{1}{2}Rg_{\mu\nu} = 0$$

Coupled, second order, non-linear,
partial differential equations

Formulation

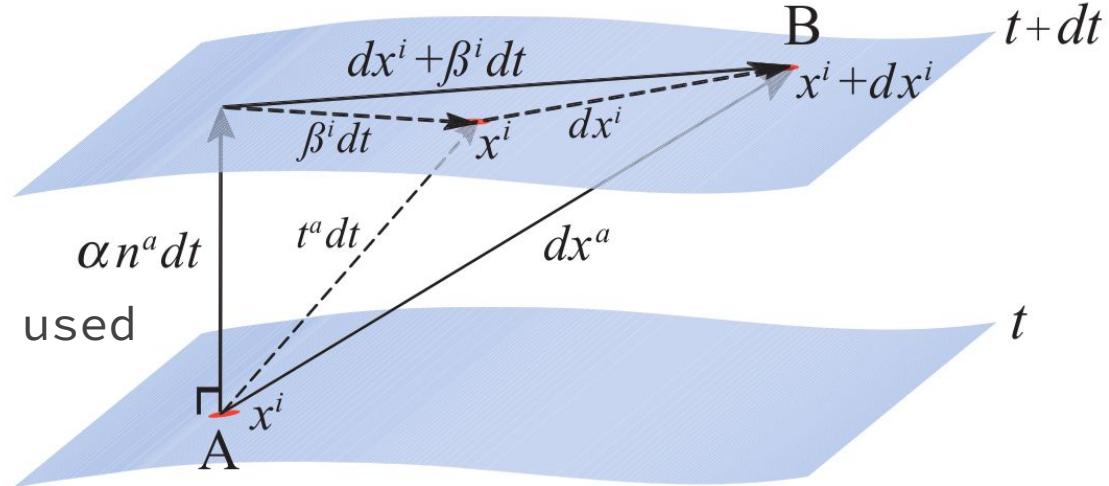
How do we want the equations to look?

$$\partial_t \vec{u} + \mathbf{A} \partial_i \vec{u} = D(\vec{u})$$

- 1st order!
- \vec{u} is a vector of things we are evolving
- \mathbf{A} is a matrix
- $D(\vec{u})$ is source function
- Plus some constraint equations, like from E&M $\nabla \cdot \vec{B} = 0$

Formulation

Formulations throughout history



- ADM (Arnowitt, Deser, Misner)
- BSSN (Baumgarte, Shapiro, Shibata, Nakamura)
- GH (Generalized Harmonic)
- Z4 family

ADM (early 1960s)

- First major formalism used
- 3+1 Decomposition
 - ◆ Spatial metric
 - ◆ Extrinsic curvature
 - ◆ Lapse, Shift
 - ◆ Derivatives
- Weakly hyperbolic -> Not well posed -> Unstable!!!

Formulation

BSSN

- Similar to ADM
 - ◆ 3+1 Decomposition
- But add 2 new things
 - ◆ Conformal decomposition
 - ◆ New evolution variable
- Hyperbolicity now depends on gauge choice!
- Most widely used formulation (Einstein toolkit)

$$ds^2 = \psi^2 d\bar{s}^2$$

GH

- Does *NOT* use 3+1 decomposition
- Evolves entire spacetime (the metric itself)
- Strongly hyperbolic regardless of gauge
- Has a known characteristic decomposition
 - ◆ Eigenvectors and values of \mathbf{A}

$$\partial_t \vec{u} + \mathbf{A} \partial_i \vec{u} = D(\vec{u})$$

Formulation

This is what SXS uses :)

Z4 Family

- Very similar to BSSN
 - ◆ 3+1 decomposition with conformal decomposition
- Extra conformal transformations on constraints
- Now strongly hyperbolic!
 - ◆ Like GH
- “Best of both worlds”
- Many different formulations
 - ◆ Z4
 - ◆ CCZ4
 - ◆ Z4c
 - ◆ F0-CCZ4

Formulation

Gauge Choice

Your formulation determines your gauge (coordinates)

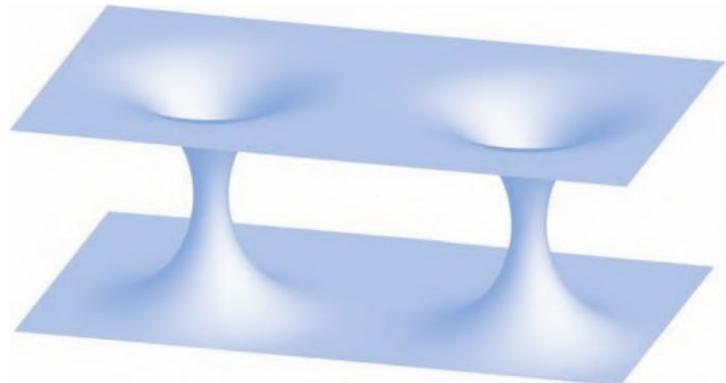
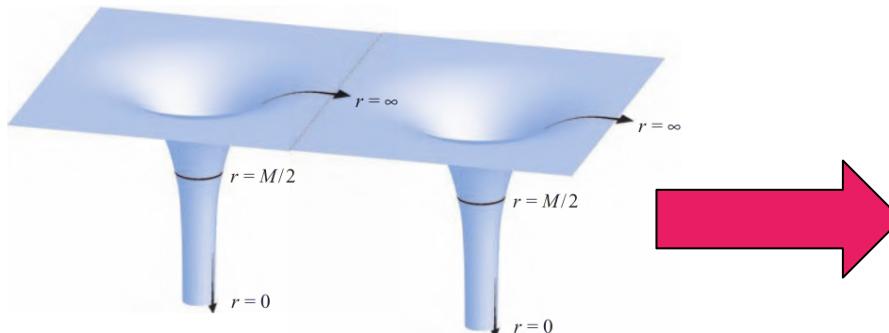
→ GH

- ◆ Harmonic coordinates

$$\nabla_b \nabla^b x^a = 0 \implies -g^{bc} \Gamma_{bc}^a \equiv \Gamma^a = 0$$

- ◆ Generalized Harmonic coordinates

$$-\Gamma^a = H^a(t, x^i, g_{bc})$$



- ◆ Still have singularities... :(
- ◆ Probably have to use excision

Your formulation determines your gauge (coordinates)

→ BSSN and Moving puncture gauge

- ◆ Remove physical singularity from coordinates but leaves coordinate singularities
- ◆ Just don't put a grid point at the coordinate singularity...

Gauge Choice

Initial Data

Need a snapshot of an evolution

- 1D wave equation, simple profile
- For BBH, need values and derivatives of metric everywhere
- Amounts to solving the constraint equations (elliptic equations)

$$R + K^2 + K_{ij}K^{ij} = 0$$

$$D_j(K^{ij} - \gamma^{ij}K) = 0$$

Initial Data

Methods

- Conformal transformations
 - ◆ Spatial metric
 - ◆ Extrinsic curvature
- Conformal transverse traceless decomposition (CTT)
 - ◆ Extrinsic curvature
- Conformal thin sandwich(CTS)
 - ◆ Gives time derivative of spatial metric also!
- Extended conformal thin sandwich (XCTS)
- Not unique to formulation of EEs
- Iterative

Initial Data

Superposition?... Superposition!! (well sort of...)

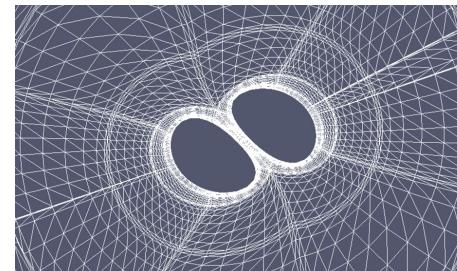
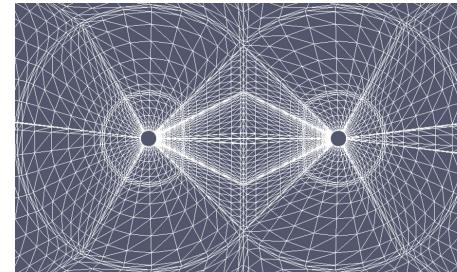
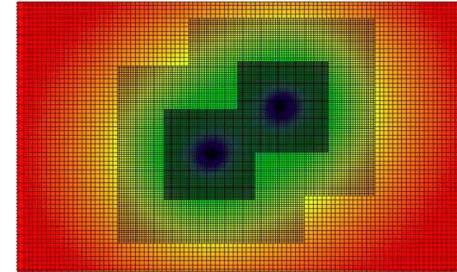
$$\gamma_{ij} = \psi^4 \bar{\gamma}_{ij}$$

$$\bar{D}^2 \psi = \dots$$

Initial Data

Boundary Conditions

Boundary conditions are hard ... :(




- Outflow
 - ◆ Outgoing characteristics
- Constraint preserving
 - ◆ Outgoing constraint violations
- Gauge
 - ◆ Outgoing gauge perturbations
- Physical
 - ◆ Ingoing characteristics
- Analytic
 - ◆ Asymptotic Flatness
- Big domain...

Numerical Implementation

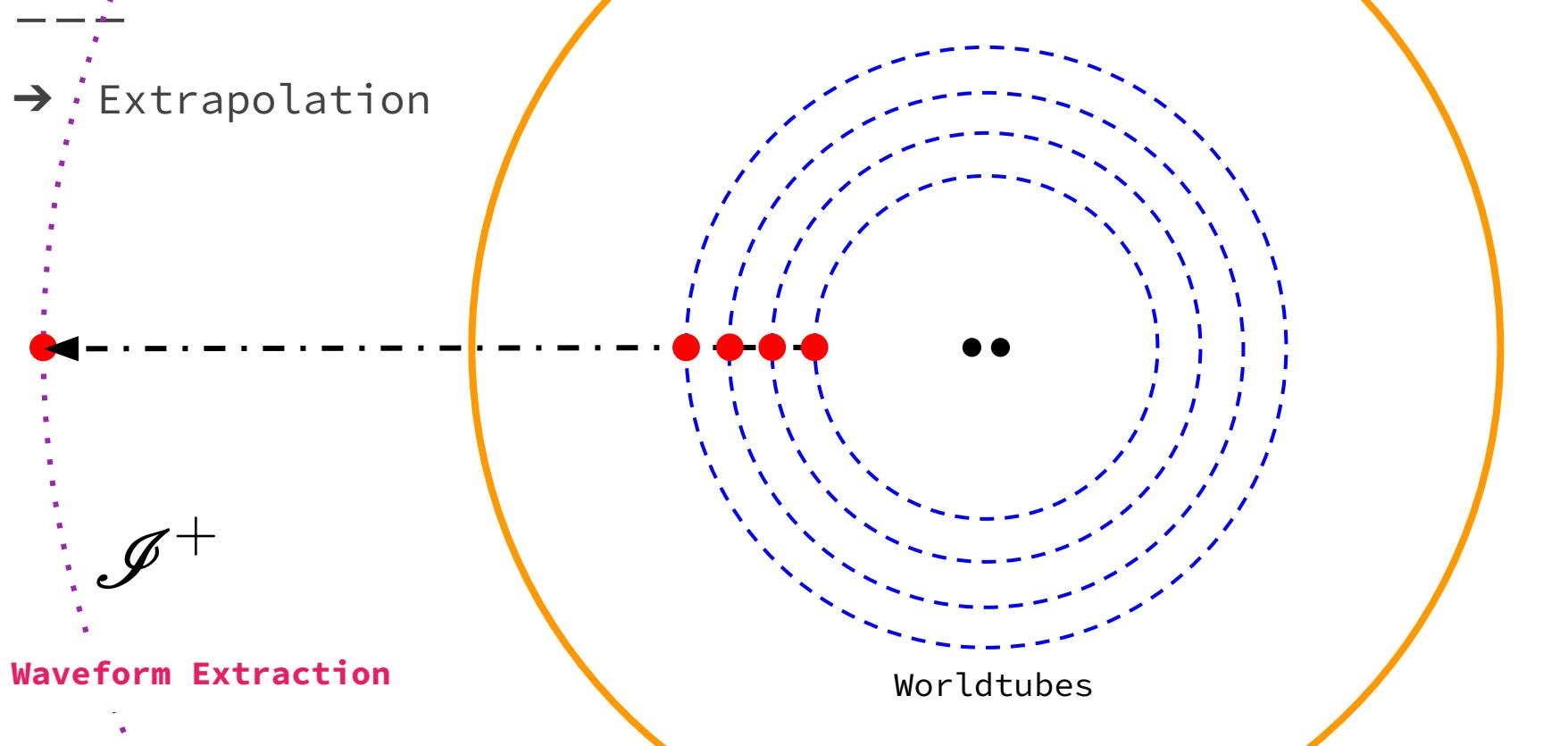
Technical things which are worth mentioning but aren't critical to your understanding

- Mesh
 - ◆ Cartesian, Curved, Moving
 - ◆ Mesh refinement
- Representation
 - ◆ Finite difference
 - ◆ Spectral
- Observations
 - ◆ Volume data
 - ◆ Constraints
 - ◆ Apparent horizons
 - ◆ Waveforms ***
- Time steppers/integrators

Numerical Implementation

Waveform Extraction

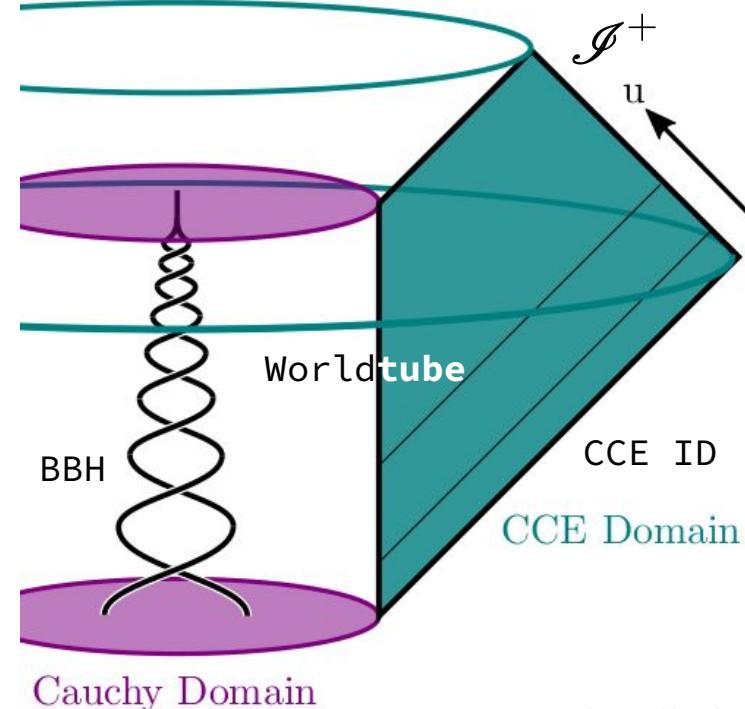
Part 1: How to get usable quantities?



- Newman-Penrose
 - ◆ Weyl Scalars (from Weyl tensor)
 - ◆ Particularly,
- Moncrief formalism
 - ◆ Perturbative decomposition of metric
 - ◆ Even-odd parity parts

$$\psi_0, \psi_1, \psi_2, \psi_3, \psi_4$$
$$\psi_4 = \ddot{h}_+ - i \ddot{h}_\times$$

$$g_{ab} = g_{ab}^{\text{Schw}} + h_{ab}$$
$$h_{ab} = \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} ({}^e h_{ab}^{\ell m} + {}^o h_{ab}^{\ell m})$$


Part 2: Now how do I get them at \mathcal{J}^+ ?

Part 2: Now how do I get them at \mathcal{J}^+ ?

- Cauchy Characteristic Extraction (CCE)

Waveform Extraction

Now you're ready to
cook up some BBHs!

Ingredients

- Formulation of Einstein's Equations
- Gauge Choice
- Initial Data
- Boundary Conditions
- Numerical Implementation
- Waveform Extraction

Thank you!