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Outline These Notes are an introduction to some important concepts within asteroseismology.
We first derive the dispersion relation for oscillation modes under the influence of pressure and
buoyancy, identifying and characterizing p mode and g modes. We then discuss some observational
properties of stellar oscillation spectra, and translate them to physical properties of a star. Finally,
we briefly describe the impact of rotation and magnetism on oscillation spectra.
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1 Dispersion relation for stellar oscillations

In this section, we derive a rough radial dispersion relation for non-radial oscillations in perfectly
spherical stars under only the influence of pressure and buoyancy. In particular, this means that
we neglect effects such as rotation, magnetic fields, and shear restorative forces, all of which may
be important in some situations but which dramatically complicate the mathematics.

The derivation shown here can be found in standard texts such as [1].

1.1 Full fluid equations

There are five fluid equations which we should solve simultaneously, reflecting the five fluid prop-
erties that we are interested in keeping track of (the density ρ, pressure p, and three components
of the fluid velocity u⃗). We will write these equations in terms of the convective derivative (the
Lagrangian perspective), tracking the properties of a fluid parcel which we follow as it moves
around, i.e.,

df

dt
≡ ∂f

∂t
+ (u⃗ · ∇) f (1)

First, the continuity equation is
dρ

dt
+ ρ∇ · u⃗ = 0 (2)

The three components of the momentum equation can be written in the form

ρ
du⃗

dt
= −∇p− ρgr̂ (3)

where g = g(r) is the gravitational acceleration at radius r. Finally, to close the equations, we will
write down the energy equation, which relates the density of a fluid parcel to its pressure:

d ln p

dt
= γ

d ln ρ

dt
(4)

This reflects the adiabatic assumption that a given fluid parcel’s pressure is related to its density
by p ∝ ργ . It is important to note that this relation is only true for a given fluid parcel, and the
prefactor of this relation depends on the specific entropy of the fluid parcel. In other words, it is
very important that we write down Equation 4 with convective, not partial, derivatives.

1.2 Linearized equations

In order to find the oscillation modes of the star, we assume that all of the perturbations are
proportional to eiωt. In practice, this means that we can replace time derivatives ∂/∂t by iω. Note
that the fluid displacements are related to the fluid velocities by u⃗ = dξ⃗/dt.

We will also linearize the equations by assuming that all perturbations can be decomposed into a
large, time-independent equilibrium part and a small perturbation. We can write

ρ (x⃗, t) = ρ0(r) + ρ′ (x⃗, t)

p (x⃗, t) = p0(r) + p′ (x⃗, t)
(5)
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Note that the equilibrium fluid displacement/velocity is zero, so u⃗ (or ξ⃗) is already a small quantity.
Note that, under this assumption, the convective derivative of a perturbation is the same as its
partial time derivative, e.g., dρ′/dt ≈ ∂ρ/∂t.

Then, keeping only terms first-order in the perturbations and working in spherical coordinates, we
have

ρ′

ρ0
+

1

r2
∂

∂r

(
r2ξr

)
+∇h · ξ⃗h = 0 (continuity) (6)

where we have defined ξ⃗h = ξ⃗− ξrr̂ to be the horizontal fluid displacement, and ∇h = ∇− (∂/∂r)r̂
to be the horizontal derivative operator.

The momentum equation becomes

−ρ0ω
2ξr = −∂p′

∂r
− ρ′g (radial momentum) (7)

−ρ0ω
2ξ⃗h = −∇hp

′ (horizontal momentum) (8)

We have made the Cowling approximation, that the gravity g remains its equilibrium quantity.
Not making this approximation entails writing and solving Poisson’s equation, which complicates
the mathematics.

For the energy equation, we can expand the convective derivatives, keep only linear terms, and
rearrange:

ρ′

ρ0
− p′

γp0
= ξr

(
1

γ

d ln p0
dr

− d ln ρ0
dr

)
(9)

Define the Brunt–Väisälä frequency (or buoyancy frequency) N as

N2 ≡ g

(
1

γ

d ln p0
dr

− d ln ρ0
dr

)
(10)

Note that N2 can be either positive or negative. When N2 > 0, N corresponds to the frequency
of oscillation of a radially displaced fluid parcel in a radiative (i.e., convectively stable, stably
stratified) zone. When N2 < 0, the zone is convectively unstable and cannot support gravity
waves.

We also define the sound speed as

c2s ≡
γp0
ρ0

(11)

The energy equation then becomes

p′ = ρ′c2s −
ρ0N

2c2s
g

ξr (energy) (12)
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Intuitively, this form of the energy equation reflects the two different ways that an Eulerian pressure
perturbation can change. The first term on the right hand side simply relates p′ to the density
perturbation via the sound speed. The second term represents the fact that, when there is some
nonzero radial displacement ξr, the fluid parcel which now occupies a given position has a slightly
different equilibrium pressure (encoded by N2/g).

1.3 Horizontal eigenfunctions

Before we try to solve the equations, it would first be beneficial to derive the eigenfunctions of the
horizontal Laplacian operator ∇2

h, whose action on a function Y = Y (θ, ϕ) is

∇2
hY (θ, ϕ) =

1

r2 sin θ

∂

∂θ

(
sin θ

∂Y (θ, ϕ)

∂θ

)
+

1

r2 sin2 θ

∂2Y (θ, ϕ)

∂ϕ2
(13)

Exploiting the axisymmetry of the problem, we can take Y (θ, ϕ) = f(θ)eimϕ for an integer m. Then

∇2
hf(θ) =

1

r2 sin θ

d

dθ

(
sin θ

df(θ)

dθ

)
− m2

r2 sin2 θ
f(θ) (14)

Now take µ = cos θ. Then the eigenvalue equation for ∇2
h for eigenvalue −λ/r2 becomes

d

dµ

((
1− µ2

) df(µ)
dµ

)
− m2

1− µ2
f(µ) = −λf(µ) (15)

Equation 15 is the general Legendre equation, and is solved by the associated Legendre
polynomials f(µ) = Pm

ℓ (µ) with eigenvalue λ = ℓ(ℓ + 1) such that ℓ ≥ m is a non-negative
integer.

We then see that the eigenfunctions are the spherical harmonics Y m
ℓ (θ, ϕ), defined to be

Y (θ, ϕ) = Pm
ℓ (cos θ)eimϕ (16)

1.4 Solving the linearized equations

The broad goal in solving the linearized equations will be to write all the equations in terms of the
pressure (p′) and radial displacement (ξr) perturbations. First, we take the horizontal divergence
of the horizontal momentum equation (Equation 8) to find

∇h · ξ⃗h =
1

ρ0ω2
∇2

hp
′ (17)

The energy equation (Equation 12) can be solved for ρ′ to obtain

ρ′ =
1

c2s
p′ +

ρ0N
2

g
ξr (18)

We can then substitute Equations 17 and 18 into the linearized continuity equation (Equation 6)
to obtain

1

ρ0c2s
p′ +

N2

g
ξr +

∂ξr
∂r

+
2

r
ξr +

1

ρ0ω2
∇2

hp
′ = 0 (19)
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Assuming that the horizontal dependences of all of the perturbations are spherical harmonics (Equa-
tion 16), Equation 19 becomes

dξr
dr

= −
(
2

r
+

N2

g

)
ξr +

1

ρ0c2s

(
S2
ℓ

ω2
− 1

)
p′ (20)

Here, we have defined the Lamb frequency as

S2
ℓ =

ℓ(ℓ+ 1)c2s
r2

(21)

The Lamb frequency can be interpreted as the frequency of an acoustic wave with horizontal
wavenumber kh ≡

√
ℓ(ℓ+ 1)/r via S2

ℓ = k2hc
2
s.

We can also substitute our Equation 18 into Equation 7 to obtain

dp′

dr
= ρ0

(
ω2 −N2

)
ξr −

g

c2s
p′ (22)

Equations 20 and 22 give the radial derivatives of ξr and p′ in terms of ξr and p′. As a very rough
approximation, we can ignore the first term of Equation 19 and the second term of Equation 22—
for high radial wavenumbers, we can argue that it is approximately fine to neglect terms ∼ 1/r or
inverse scale heights of equilibrium quantities.

Then, solving for p′ in Equation 20 and substituting into Equation 22, we obtain a crucial heuristic
equation in asteroseismology:

d2ξr
dr2

= − 1

ω2c2s

(
ω2 −N2

) (
ω2 − S2

ℓ

)
ξr (23)

If we roughly write ξr ∝ ei
∫ r kr(r′)dr′ where kr ≫ 1/r (the Wentzel–Kramers–Brillouin ap-

proximation, or WKB approximation), this becomes

k2rc
2
s =

1

ω2

(
ω2 −N2

) (
ω2 − S2

ℓ

)
(24)

1.5 Acoustic modes

When ω2 ≳ N2, S2
ℓ (high frequency), the dispersion relation becomes

ω2 = k2rc
2
s (25)

We recognize this as the acoustic dispersion relation for a sound wave (note that we have already
assumed that kr ≫ kh by assuming that terms ∼ 1/r are small). This is a pressure wave, also
called a p mode.
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1.6 Gravity modes

When ω2 ≲ N2, S2
ℓ (low frequency), the dispersion relation becomes

ω2 =
k2h
k2r

N2 (26)

We recognize this as the dispersion relation of gravity waves, or g modes, in the limit where
kr ≫ kh.

Note that g modes are impossible in convectively unstable regions, those where N2 < 0. In these
cases, there can only be p modes when ω2 ≳ S2

ℓ .

Note that, even though technically N2 is nonzero in a convective zone, in practice convection is so
efficient at mixing entropy superadiabatically that N2 will be forced to be very small.

Also, note that S2
0 = 0. Therefore, it is not possible for ℓ = 0 (radial) oscillations to be gravity

modes.

1.7 Evanescent regions

When ω2 is in between N2 and S2
ℓ (either N2 < ω2 < S2

ℓ or S2
ℓ < ω2 < N2), the dispersion relation

will imply that
k2r < 0 (27)

In other words, waves in these regions are evanescent—they will exponentially grow or decay with
radius, but will not be propagating like they would be in the p mode or g mode regions.

1.8 Propagation diagrams

A given oscillation mode has a single ω throughout the entire star, by definition. Therefore, the
propagation diagram is an extremely useful tool in asteroseismology for visualizing the radial
structure of a star and the behavior of that star’s oscillation modes. One such diagram is shown in
Figure 1.
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Figure 1: A propagation diagram showing the Brunt–Väisälä frequency profiles for three different
stellar models, as well as the ℓ = 1 Lamb frequency profile for one of them. The p mode region is
shown in gray, the g mode region is shown in green, and the evanescent region is shown in green.
The horizontal line labeled νmax is a representative oscillation frequency. This figure is reproduced
from the left panel of Figure 4 in [2].

From Figure 1, a few interesting things can be observed. First, typically the Lamb frequency is
larger (sometimes much larger) than the Brunt–Väisälä frequency. This is particularly true in main
sequence stars.

We observe that many stars (e.g., red giants, the Sun, etc.) have surface convection zones, meaning
that they can only maintain p modes on the surface. If there is also a radially large evanescent
region, then it will be very hard to detect g modes, if it is even possible at all.

In some situations, like red giants (like the models shown in Figure 1), the most excited modes lie
in regions where the evanescent zone has very small vertical extent. This means that the p mode
oscillations at the surface of the star couple to the g mode oscillations at the center of the star,
since there is not much amplitude decay within the evanescent region. Such modes are typically
called mixed modes, and will have the character of both p modes and g modes. The coincidence
that red giants are excited at such convenient frequencies means that g modes can be effectively
leveraged to learn about their cores.
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2 Measuring oscillation modes to extract physics

2.1 Mode quantization

A star is a three-dimensional problem. Therefore, we expect three quantization conditions. The
first and second quantization condition came from solving for the horizontal eigenfunctions, giving
ℓ and m as quantum numbers. The final quantization condition comes from imposing boundary
conditions at two radii in the star (usually at the center and the surface), which quantizes the
frequencies ω which modes can have. It is common to use the Eckart scheme for counting radial
orders as n = np−ng, where np and ng are the number of zero-crossings in the p mode and g mode
regions, respectively [3].

Software such as gyre [4] can be used to find such modes. However, some heuristics exist for
relating features of the mode spectrum to relate properties of a star’s oscillation spectrum to the
physical parameters of the star.

2.2 Observing stellar oscillations

Observationally, oscillation modes can be measured in two different ways, and such measurements
always reflect the amplitude of the mode at or near the surface of the star:

• Photometry: They can be measured by taking the power spectrum of the light curve
of the star, typically over a period of months or even years. The light curve mostly reflects
changes in brightness due to temperature perturbations on the surface of the star.

• Spectroscopy: They can be measured by tracing the radial velocities of fluid at the surface
of the star.

Because of effects like geometric cancellation (adjacent outwards and inwards-moving cells “can-
celling” each other out in, e.g., brightness), it is extremely hard to measure modes with ℓ ≳ 3, with
the amplitude of modes decreasing as ∝ 1/

√
ℓ (see, e.g., [5]).

Some examples of oscillation spectra are shown in Figure 2. Asteroseismic observations typically
(but do not always) come from big observational surveys such as Kepler, CoRoT, and (more re-
cently) TESS.
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Figure 2: Four solar-like oscillation spectra measured by Kepler, reproduced from the Figure 3 of
[6]. These four stars are all RGB or RC stars.

2.3 νmax and ∆ν

In this section, I will primarily focus on red giant stars, because of their strong mixed-mode char-
acters.

The power spectrum of a red giant consists of many discrete modes whose amplitudes follow a
broad, peaked shape (for examples, see Figure 2). Even though an infinite number of modes exist
all across the frequency spectum, not all of those modes will necessarily be driven, and driving
must come from some physical source.

The rough frequency at which the amplitude of the modes is the highest is called the frequency
of maximum power or νmax. It is difficult to derive νmax from first principles. However, it can
be estimated reasonably effectively by arguing that the oscillations in a red giant will be primarily
driven by convective motions in the envelope of the star. In particular, we can estimate that νmax

is the frequency of oscillation of a fluid blob moving through a pressure scale height Hp ∼ p/ρg at
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the sound speed cs ∼ p1/2/ρ1/2. Then

νmax ∼ cs
Hp

∼ gρ1/2

p1/2
∼ m1/2g

k1/2T
1/2
eff

∝ MR−2T
−1/2
eff (28)

where we have used the ideal gas law.

Adjacent modes of different radial order but the same ℓ are separated by the large frequency
spacing ∆ν, which is roughly the sound-speed crossing time through the entire star. Using cs ∼
p1/2/ρ1/2 ∼

√
GM/R from the characteristic pressure and density scales of a star, we have

∆ν ∼ cs
R

∼
√

Gρ̄ ∝ M1/2R−3/2 (29)

where ρ̄ is the average density of the star.

Together with a measurement of Teff (usually from stellar photometry), measurements of νmax and
∆ν can be used to extract the mass and radius of a star using Equations 28 and 29 (for some often
Sun-based calibration).

2.4 ∆Pg

When mixed modes couple to the gravity wave-dominated core of a star (e.g., a red giant), a given
acoustic mode will appear to split in the power spectrum into many modes which are closely spaced
by roughly the g mode period spacing ∆Pg. Note that, unlike in the case with ∆ν, this splitting
is roughly equal in period, not frequency.

Heuristically, one imagines that the “same” acoustic mode is coupling to many different gravity
modes in the core, manifesting in many modes whose frequencies are all approximately (but not
exactly) that of the acoustic mode.

The period spacing is roughly given by an integral of the Brunt–Väisälä frequency over the core of
the star:

∆P−1
g =

2π2√
ℓ(ℓ+ 1)

∫
νmax<N

N

r
dr (30)

3 Effect of other physics

So far, we have described the oscillation modes of a spherical star under pressure and buoyancy
only. In this section, we explore the effects of other forces on stellar oscillation spectra.

3.1 Rotation

A standard reference for the content of this section is [7].

In addition to distorting the star itself, rotation contributes a Coriolis force (∝ Ω) and centrifu-
gal force (∝ Ω2). It is common to neglect the distortion of the star and the centrifugal force
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for analytical convenience, and only include the Coriolis force in the momentum equation (this is
reasonable at low rotation rates).

Rotation breaks the spherical symmetry of the star by defining a special direction via

Ω⃗ = Ωẑ = Ωcos θr̂ − Ωsin θθ̂ (31)

However, azimuthal symmetry is maintained, and perturbations can still be assumed to be propor-
tional to eimϕ for integer m (however, the sign of mΩ/ω determines whether the mode is prograde
or retrograde).

If the WKB approximation is assumed in both directions, it can be shown that the dispersion
relation becomes (e.g., [8])

ω2 −
k2h
k2

N2 −

(
k⃗ · 2Ω⃗

k

)2

= 0 (32)

Note that, if |N | ≫ |ω|, |Ω| (which is typical of, e.g., gravity waves), then kh ≪ kr. Therefore,
Ω⃗ · k⃗ ≈ Ωcos θkr. The realization that the θ̂ component of Ω⃗ is less important justifies dropping this
component. This approximation is called the traditional approximation of rotation (TAR),
and miraculously makes the radial and horizontal fluid equations separable.

Under the TAR, the θ dependence Θ = Θ(µ) are no longer associated Legendre polynomials, but
are solutions to the Laplace tidal equation,

d

dµ

(
1− µ2

1− µ2ν2
dΘ(µ)

dµ

)
− 1

1− µ2ν2

(
m2

1− µ2
+mν

1 + µ2ν2

1− µ2ν2

)
Θ(µ) = −λΘ(µ) (33)

where ν ≡ 2Ω/ω (note that this becomes the generalized Legendre equation when ν = 0). The
horizontal wavenumber then becomes kh ∼

√
λ/r (where λ ̸= ℓ(ℓ+ 1) in general).

The functions Θ(µ) are called Hough functions and have some interesting properties.

• For large ν, the functions become λ = (2lµ − 1)2ν2 (where lµ is the number of nodes). A
heuristic argument for this is given in [9], and a more detailed treatment can be found in
[10, 11].

• For large ν, the λ > 0 modes become more and more confined to the equatorial region of the
star (within |µ| ≲ 1/ν). Roughly speaking, the combination µν can be seen to “set the scale”
of the function’s dependence on µ.

• For |ν| > 1, the coefficients of the equation change sign over the domain, and an infinite λ < 0
spectrum is present.

• If λ < 0, the sign of
(
ω2 − k2hc

2
s

) (
ω2 −N2

)
can still be positive even if N2 < 0 (convective

region). Therefore, otherwise unstable gravity modes in the convective region of the star can
be stabilized by the Coriolis force.

11



Figure 3 shows λ as a function of ν for m = −2.

Figure 3: The eigenvalues of the Laplace tidal equation λ as a function of ν for m = −2, reproduced
from Figure 1 of [7].

3.2 Magnetism

For a local WKB analysis and specializing to magneto-gravity waves only (ω ≪ N,Sℓ), the disper-
sion relation becomes (e.g., [8])

ω2 −
k2h
k2

N2 −
(
k⃗ · v⃗A

)2
= 0 (34)

We note the similarity to Equation 32, except with the Alfven velocity v⃗A taking the place of 2Ω⃗/k.
Note that v⃗A = B⃗0/

√
4πρ0 is complicatedly dependent on the magnetic field geometry, stellar

profile, and k⃗.
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Using kr ≫ kh so that k ≈ kr, we can write

k4rv
2
A,r − k2rω

2 + k2hN
2 = 0 (35)

This is a quadratic in k2r , and is solved by (e.g., [12])

k2r =
ω2

2v2A,r

1±

√
1−

4v2A,rN
2k2h

ω4

 (36)

We see that kr is complex (i.e., not totally propagating) when

ω <
√

2khvA,rN (37)

where kh ≃
√
ℓ(ℓ+ 1)/r. This effect has been suspected to be the origin of suppressed dipole

oscillation modes in a large minority of red giants (e.g., [13]).
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