

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

A Sketch of the LIGO Detectors

Rhiannon Udall

January 9, 2023

Table of Contents

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands
Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

1 Introduction

2 Building Blocks

- Fabry-Perot Cavities
- Michelson Interferometers

3 Gravitational Wave Signal Detection

- Modulation and Sidebands
- Response to a GW

4 Noise Sources

- Quantum Noise
- Radiation Pressure

5 Modern Interferometer Design Elements

What this Talk Covers (and Some of the Things it Doesn't)

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands
Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 This talk aims to go past the classic Michelson interferometer picture, following Bond et al. [2]
- 2 Accordingly, it includes (brief) introductions to cavities, to detection schemes, and to noise sources
- 3 It *does not* include a number of things that are really important to understand the detectors, most notably any discussion of control systems or mode cleaning

Gravitational Waves in Brief

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Gravitational waves originating from the quadrupolar moment are given by [1]:

$$h_{ij} = \frac{2}{c^4} \frac{G}{D_L} \frac{d^2 Q_{ij}}{dt^2} \quad (1)$$

Gravitational Waves in Brief

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Gravitational waves originating from the quadrupolar moment are given by [1]:

$$h_{ij} = \frac{2}{c^4} \frac{G}{D_L} \frac{d^2 Q_{ij}}{dt^2} \quad (1)$$

- 2 G/c^4 is very small, but scaling with luminosity distance is inverse, instead of inverse square!

Gravitational Waves in Brief

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Gravitational waves originating from the quadrupolar moment are given by [1]:

$$h_{ij} = \frac{2}{c^4} \frac{G}{D_L} \frac{d^2 Q_{ij}}{dt^2} \quad (1)$$

- 2 G/c^4 is very small, but scaling with luminosity distance is inverse, instead of inverse square!
- 3 For L shaped detectors, we want to measure:

$$h = \frac{L_X - L_Y}{L} = F_+ h_+ + F_X h_X \sim O(10^{-21}) \quad (2)$$

Table of Contents

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands
Response to a GW

Noise Sources
Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

1 Introduction

2 Building Blocks

- Fabry-Perot Cavities
- Michelson Interferometers

3 Gravitational Wave Signal Detection

- Modulation and Sidebands
- Response to a GW

4 Noise Sources

- Quantum Noise
- Radiation Pressure

5 Modern Interferometer Design Elements

Optical Elements

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Under some assumptions, we can describe light by it's instantaneous electric field at a fixed time:

$$E = E_0 \exp(-ikz) \quad (3)$$

Optical Elements

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Under some assumptions, we can describe light by it's instantaneous electric field at a fixed time:

$$E = E_0 \exp(-ikz) \quad (3)$$

- 2 The complex phase and amplitude are absorbed into E_0

Optical Elements

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands
Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Under some assumptions, we can describe light by it's instantaneous electric field at a fixed time:

$$E = E_0 \exp(-ikz) \quad (3)$$

- 2 The complex phase and amplitude are absorbed into E_0
- 3 We will be particularly interested in how this interacts with mirrors, and propagates through space

Mirrors

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

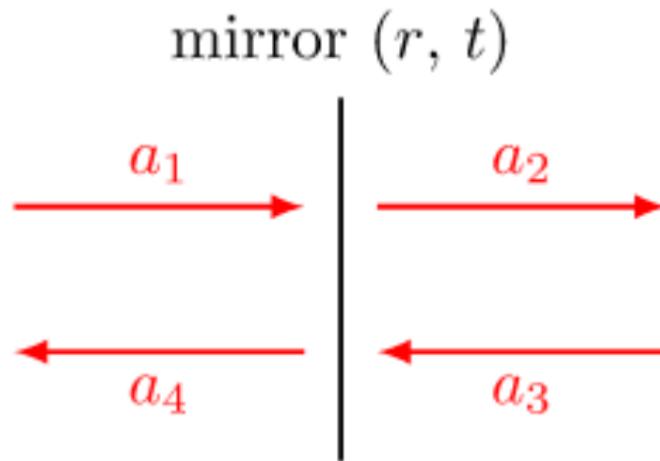


Figure: An illustration of the idealized mirror

Mirrors

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

1 We can write out a system of equations for this:

$$a_2 = ita_1 + ra_3 \quad (4)$$

$$a_4 = ita_3 + ra_1 \quad (5)$$

Mirrors

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands
Response to a GW

Noise Sources
Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

1 We can write out a system of equations for this:

$$a_2 = ita_1 + ra_3 \quad (4)$$

$$a_4 = ita_3 + ra_1 \quad (5)$$

2 And rearrange to a corresponding matrix equation

$$\begin{pmatrix} a_1 \\ a_4 \end{pmatrix} = \frac{i}{t} \begin{pmatrix} -1 & r \\ -r & 1 \end{pmatrix} \begin{pmatrix} a_2 \\ a_3 \end{pmatrix} \quad (6)$$

Empty Space

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

Figure: An illustration of scalar wave propagation through space

Empty Space

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

1 We can once again setup a systems of equations:

$$a_2 = a_1 \exp(-ikD) \quad (7)$$

$$a_4 = a_3 \exp(-ikD) \quad (8)$$

Empty Space

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands
Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

1 We can once again setup a systems of equations:

$$a_2 = a_1 \exp(-ikD) \quad (7)$$

$$a_4 = a_3 \exp(-ikD) \quad (8)$$

2 Which has the corresponding matrix equation

$$\begin{pmatrix} a_1 \\ a_4 \end{pmatrix} = \begin{pmatrix} \exp(ikD) & 0 \\ 0 & \exp(-ikD) \end{pmatrix} \begin{pmatrix} a_2 \\ a_3 \end{pmatrix} \quad (9)$$

Two Mirror Systems

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

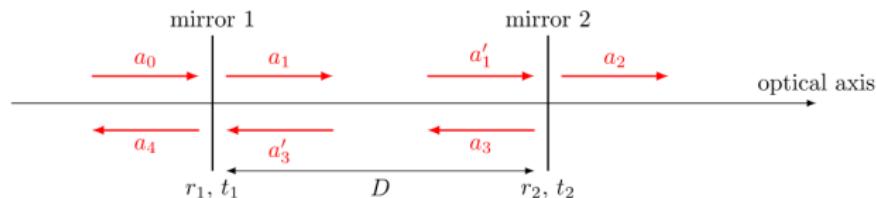


Figure: An illustration of the idealized two mirror system

Two Mirror Systems

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

1 Now we can make use of the matrix convenience:

$$\begin{pmatrix} a_0 \\ a_4 \end{pmatrix} = \frac{i}{t_1} \begin{pmatrix} -1 & r_1 \\ -r_1 & 1 \end{pmatrix} \begin{pmatrix} \exp(ikD) & 0 \\ 0 & \exp(-ikD) \end{pmatrix} \times \frac{i}{t_2} \begin{pmatrix} -1 & r_2 \\ -r_2 & 1 \end{pmatrix} \begin{pmatrix} a_2 \\ 0 \end{pmatrix} \\ = \frac{-1}{t_1 t_2} \begin{pmatrix} e^+ - r_1 r_2 e^- & -r_2 e^+ + r_1 e^- \\ -r_2 e^+ + r_1 e^- & e^- - r_1 r_2 e^+ \end{pmatrix} \begin{pmatrix} a_2 \\ 0 \end{pmatrix} \quad (10)$$

Two Mirror Systems

A Sketch of
the LIGO
Detectors

Rhian
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

1 Now we can make use of the matrix convenience:

$$\begin{pmatrix} a_0 \\ a_4 \end{pmatrix} = \frac{i}{t_1} \begin{pmatrix} -1 & r_1 \\ -r_1 & 1 \end{pmatrix} \begin{pmatrix} \exp(ikD) & 0 \\ 0 & \exp(-ikD) \end{pmatrix} \times \frac{i}{t_2} \begin{pmatrix} -1 & r_2 \\ -r_2 & 1 \end{pmatrix} \begin{pmatrix} a_2 \\ 0 \end{pmatrix} = \frac{-1}{t_1 t_2} \begin{pmatrix} e^+ - r_1 r_2 e^- & -r_2 e^+ + r_1 e^- \\ -r_2 e^+ + r_1 e^- & e^- - r_1 r_2 e^+ \end{pmatrix} \begin{pmatrix} a_2 \\ 0 \end{pmatrix} \quad (10)$$

2 And solve for the ratio

$$\frac{a_2}{a_0} = \frac{-t_1 t_2 \exp(-ikD)}{1 - r_1 r_2 \exp(-i2kD)} \quad (11)$$

Properties of Fabry-Pérot Cavities

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 We can define *free spectral range* (FSR):

$$\text{FSR} = \frac{c}{2L} \quad (12)$$

Properties of Fabry-Pérot Cavities

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 We can define *free spectral range* (FSR):

$$\text{FSR} = \frac{c}{2L} \quad (12)$$

- 2 and the *full width at half maximum* (FWHM):

$$\text{FWHM} = \frac{2\text{FSR}}{\pi} \arcsin\left(\frac{1 - r_1 r_2}{2\sqrt{r_1 r_2}}\right) \quad (13)$$

Properties of Fabry-Pérot Cavities

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands
Response to a GW

Noise Sources
Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 We can define *free spectral range* (FSR):

$$\text{FSR} = \frac{c}{2L} \quad (12)$$

- 2 and the *full width at half maximum* (FWHM):

$$\text{FWHM} = \frac{2\text{FSR}}{\pi} \arcsin\left(\frac{1 - r_1 r_2}{2\sqrt{r_1 r_2}}\right) \quad (13)$$

- 3 Which together give us the cavity's finesse (F):

$$F = \frac{\text{FSR}}{\text{FWHM}} = \frac{\pi}{2 \arcsin\left(\frac{1 - r_1 r_2}{2\sqrt{r_1 r_2}}\right)} \approx \frac{\pi}{1 - r_1 r_2} \quad (14)$$

where the final approximation assumes high finesse
($r_1, r_2 \sim 1$)

Properties of Fabry-Pérot Cavities

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

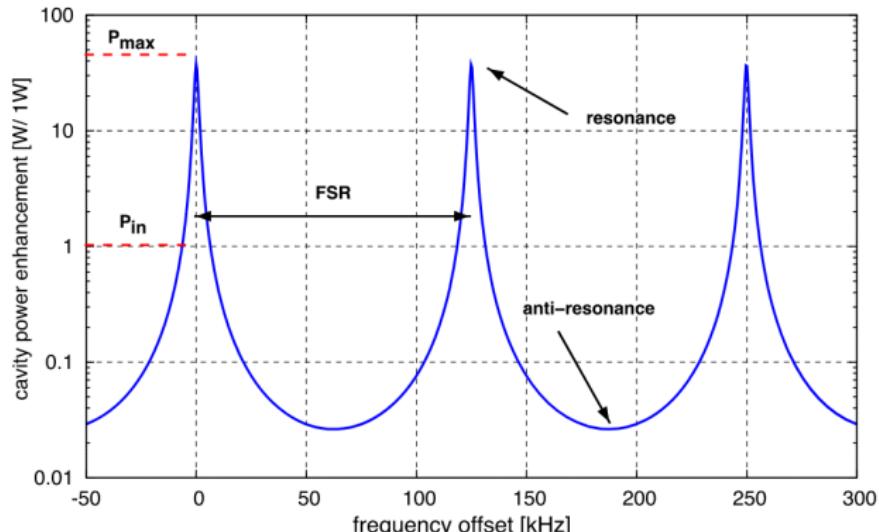


Figure: The frequency dependent power enhancement of an example Fabry-Pérot interferometer

Michelson Interferometers

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Michelson interferometers allow for precise measurements of differential arm length.

Michelson Interferometers

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Michelson interferometers allow for precise measurements of differential arm length.
- 2 A beam of light is split, sent along perpendicular arms, then recombined.

Michelson Interferometers

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Michelson interferometers allow for precise measurements of differential arm length.
- 2 A beam of light is split, sent along perpendicular arms, then recombined.
- 3 Any difference in distance traveled (modulo the wavelength of the light) results in a phase difference, such that when recombined the beams destructively interfere.

Michelson Interferometer Optics

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements



Figure: A schematic of optical fields in a simple Michelson interferometer

Michelson Interferometer Optics

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

1 The outgoing field will be:

$$E_6 = E_0 r t \left[\exp\left(i(\phi_t + \phi_{r1} + \Phi_1)\right) + \exp\left(i(\phi_t + \phi_{r2} + \Phi_2)\right) \right] \quad (15)$$

Michelson Interferometer Optics

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

1 The outgoing field will be:

$$E_6 = E_0 r t \left[\exp\left(i(\phi_t + \phi_{r1} + \Phi_1)\right) + \exp\left(i(\phi_t + \phi_{r2} + \Phi_2)\right) \right] \quad (15)$$

2 According to convention $\phi_t = \pi/2$, and $\phi_{r1} = \phi_{r2} = 0$.

Michelson Interferometer Optics

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 The outgoing field will be:

$$E_6 = E_0 r t \left[\exp\left(i(\phi_t + \phi_{r1} + \Phi_1)\right) + \exp\left(i(\phi_t + \phi_{r2} + \Phi_2)\right) \right] \quad (15)$$

- 2 According to convention $\phi_t = \pi/2$, and $\phi_{r1} = \phi_{r2} = 0$.
- 3 So we can simplify and express in terms of common and differential phase:

$$E_6 = i r t E_0 \exp\left(i \frac{\Phi_1 + \Phi_2}{2}\right) 2 \cos\left(\frac{\Phi_1 - \Phi_2}{2}\right) \quad (16)$$

CARM and DARM in Michelson Interferometers

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

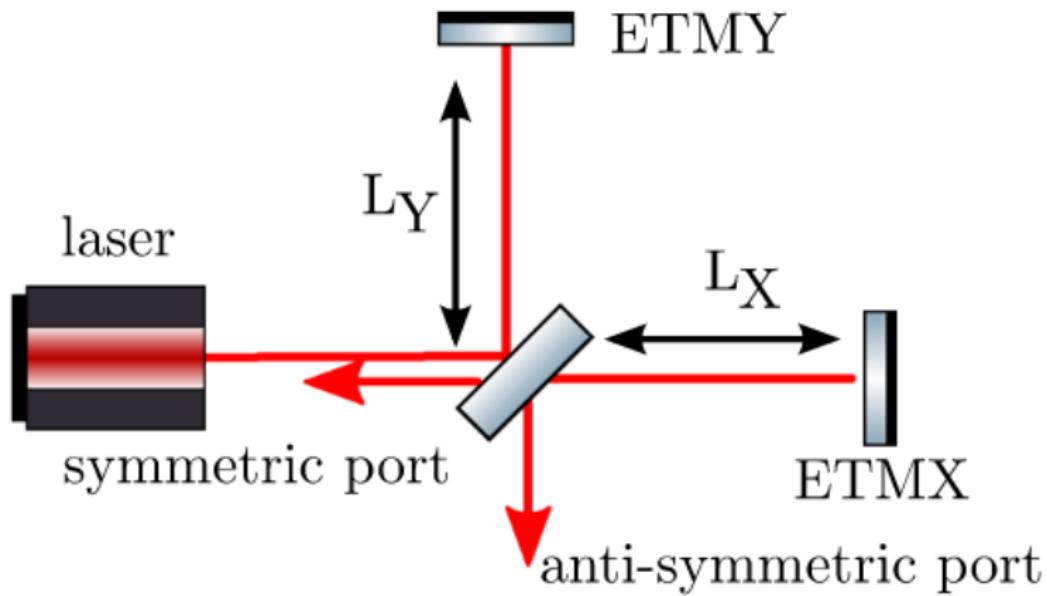


Figure: A schematic of the prototypical Michelson interferometer

CARM and DARM in Michelson Interferometers

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

1 The anti-symmetric port electric field is given by

$$E_S = E_0 \frac{i}{2} \left(\exp(i2kL_Y) + \exp(i2kL_X) \right) \quad (17)$$

CARM and DARM in Michelson Interferometers

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 The anti-symmetric port electric field is given by

$$E_S = E_0 \frac{i}{2} \left(\exp(i2kL_Y) + \exp(i2kL_X) \right) \quad (17)$$

- 2 For differential arm length (DARM) $\Delta L = L_Y - L_X$ one can compute out

$$S = E_S E_S^* = P_0 \cos^2(2\pi\Delta L/\lambda) \quad (18)$$

CARM and DARM in Michelson Interferometers

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 The anti-symmetric port electric field is given by

$$E_S = E_0 \frac{i}{2} \left(\exp(i2kL_Y) + \exp(i2kL_X) \right) \quad (17)$$

- 2 For differential arm length (DARM) $\Delta L = L_Y - L_X$ one can compute out

$$S = E_S E_S^* = P_0 \cos^2(2\pi\Delta L/\lambda) \quad (18)$$

- 3 Power depends only on DARM, not on the lengths themselves, and has minima known as *dark fringes*

Table of Contents

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands
Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

1 Introduction

2 Building Blocks

- Fabry-Perot Cavities
- Michelson Interferometers

3 Gravitational Wave Signal Detection

- Modulation and Sidebands
- Response to a GW

4 Noise Sources

- Quantum Noise
- Radiation Pressure

5 Modern Interferometer Design Elements

Phase Modulation

A Sketch of
the LIGO
Detectors

Rhian
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Phase modulations are signals on top of the carrier which look like:

$$E = E_0 \exp\left(i(\omega_0 t + m \cos(\Omega t))\right) \quad (19)$$

under the assumption that m is small.

Phase Modulation

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Phase modulations are signals on top of the carrier which look like:

$$E = E_0 \exp\left(i(\omega_0 t + m \cos(\Omega t))\right) \quad (19)$$

under the assumption that m is small.

- 2 With the magic of Bessel functions, you can do an approximation under this case to the second order

$$E \approx E_0 \exp(i\omega_0 t) \left[1 - \frac{m^2}{4} + i \frac{m}{2} \left(\exp(-i\Omega t) + \exp(i\Omega t) \right) \right] \quad (20)$$

Phase Modulation

A Sketch of
the LIGO
Detectors

Rhian
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Phase modulations are signals on top of the carrier which look like:

$$E = E_0 \exp\left(i(\omega_0 t + m \cos(\Omega t))\right) \quad (19)$$

under the assumption that m is small.

- 2 With the magic of Bessel functions, you can do an approximation under this case to the second order

$$E \approx E_0 \exp(i\omega_0 t) \left[1 - \frac{m^2}{4} + i \frac{m}{2} \left(\exp(-i\Omega t) + \exp(i\Omega t) \right) \right] \quad (20)$$

- 3 Importantly, GWs manifest themselves in the detectors as a phase modulation on the carrier beam, giving rise to *signal sidebands*

Signal Sidebands

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

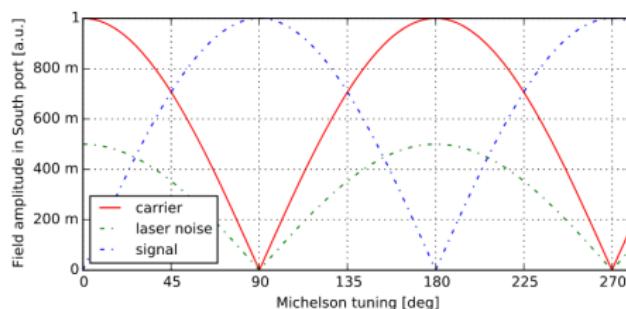
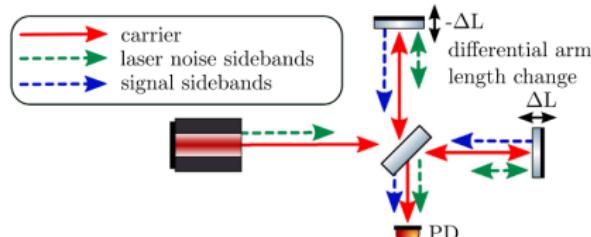



Figure: A schematic of sidebands in a Michelson interferometer, and the effect of tuning on the carrier and the sidebands

Homodyne Detection

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 If we sit at exactly the dark fringe, the signal sidebands will have nothing to beat against. LIGO handles this with the homodyne detection scheme, introducing a small DC offset δ_{off} from the dark fringe:

$$\Delta L = \frac{\pi}{2k_0} + \delta_{off} \quad (21)$$

Homodyne Detection

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 If we sit at exactly the dark fringe, the signal sidebands will have nothing to beat against. LIGO handles this with the homodyne detection scheme, introducing a small DC offset δ_{off} from the dark fringe:

$$\Delta L = \frac{\pi}{2k_0} + \delta_{off} \quad (21)$$

- 2 Plugging this in along with our GW induced sidebands gives:

$$\begin{aligned} E &= i\tau E_0 \exp(i2k_0 \bar{L}) \exp(i\omega_0 t) (2 \cos(k_0 \Delta L) + s^+ + s^-) \\ &= i\tau E_0 \exp(i2k_0 \bar{L}) \exp(i\omega_0 t) (2 \sin(k_0 \delta_{off}) + s^+ + s^-) \end{aligned} \quad (22)$$

Homodyne Detection Signal Power

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

1 Solving for the power gives

$$P = EE^* = TR|E_0|^2 \left(4 \sin^2(k_0 \delta_{off}) + 2 \sin(k_0 \delta_{off})(s^+ + s^-) + O(s^2) \right) \quad (23)$$

Homodyne Detection Signal Power

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Solving for the power gives

$$P = EE^* = TR|E_0|^2 \left(4 \sin^2(k_0 \delta_{off}) + 2 \sin(k_0 \delta_{off})(s^+ + s^-) + O(s^2) \right) \quad (23)$$

- 2 Notably, we need this DC offset for the sidebands to be visible at all. Control systems are used to maintain the interferometer in this state.

A Simple GW

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

1 Consider a simplified gravitational wave

$$h(t) = h_0 \cos(\omega_{gw} t + \phi_{gw}) \quad (24)$$

A Simple GW

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources
Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Consider a simplified gravitational wave

$$h(t) = h_0 \cos(\omega_{gw} t + \phi_{gw}) \quad (24)$$

- 2 We can compute the phase shift due to the gravitational wave with:

$$\begin{aligned} \phi &= -k_0 L \mp \frac{\omega_0}{2} \int_{t-L/c}^t h(t) dt = -k_0 L \mp \delta\phi \\ \delta\phi &= \frac{\omega_0 h_0}{\omega_{gw}} \cos\left(\omega_{gw} + \phi_{gw} - \frac{\omega_{gw} L}{2c}\right) \sin\left(\frac{\omega_{gw} L}{2c}\right) \end{aligned} \quad (25)$$

Sidebands due to a GW

A Sketch of
the LIGO
Detectors

Rhian
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 We can identify the elements of phase modulation within the equation for $\delta\phi$:

$$m_{gw} = -\frac{\omega_0 h_0}{\omega_{gw}} \sin\left(\frac{k_{gw} L}{c}\right) \quad (26)$$
$$\Phi = -\frac{k_{gw} L}{2} + \phi_{gw}$$

Sidebands due to a GW

A Sketch of
the LIGO
Detectors

Rhian
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 We can identify the elements of phase modulation within the equation for $\delta\phi$:

$$m_{gw} = -\frac{\omega_0 h_0}{\omega_{gw}} \sin\left(\frac{k_{gw} L}{c}\right) \quad (26)$$
$$\Phi = -\frac{k_{gw} L}{2} + \phi_{gw}$$

- 2 Which allows one to work work out terms from the sideband equation:

$$A_{gw} = \frac{m_{gw}}{2} = -\frac{\omega_0 h_0}{2\omega_{gw}} \sin\left(\frac{k_{gw} L}{c}\right) \quad (27)$$
$$\Phi_{gw}^{\pm} = \frac{\pi}{2} - Lk_0 \pm \left(-\frac{k_{gw} L}{2} + \phi_{gw} \right)$$
$$\alpha_{gw}^{\pm} = A_{gw} \exp(i\Phi_{gw}^{\pm}) \exp(\pm i\omega_{gw} t)$$

Sidebands Coupling

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

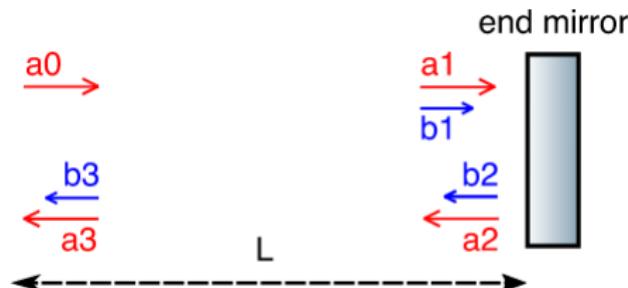


Figure: A schematic of the propagation of the carrier beam and the signal sidebands in one interferometer arm

Sidebands Coupling Mathematics

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

1 Proceeding, the carrier beams satisfy:

$$\begin{aligned}a_3 &= a_2 \exp(-ik_0 L) \\a_2 &= r_{etm} a_1 \\a_1 &= a_0 \exp(-ik_0 L)\end{aligned}\tag{28}$$

Sidebands Coupling Mathematics

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

1 Proceeding, the carrier beams satisfy:

$$\begin{aligned}a_3 &= a_2 \exp(-ik_0 L) \\a_2 &= r_{etm} a_1\end{aligned}\tag{28}$$

$$a_1 = a_0 \exp(-ik_0 L)$$

2 And the sidebands satisfy:

$$\begin{aligned}b_1^\pm &= a_0 \alpha_{gw}^\pm \\b_2^\pm &= r_{etm} b_1^\pm\end{aligned}\tag{29}$$

$$b_3^\pm = b_2^\pm \exp(-i(k_0 \pm k_{gw})L) + a_2 \alpha_{gw}^\pm$$

More Sidebands Coupling Mathematics

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- This works out to give

$$\begin{aligned} b_3^\pm &= 2r_{etm}a_0\alpha_{gw}^\pm \exp\left(-ik_0L \mp i\frac{k_{gw}L}{2}\right) \\ &\quad \times \cos\left(\mp i\frac{k_{gw}L}{2}\right) \\ &= -i\frac{r_{etm}a_0\omega_0h_0}{2\omega_{gw}} \sin(k_{gw}L) \exp(-i2k_0L) \\ &\quad \times \exp(\pm i(\omega_{gw}t - k_{gw}L + \phi_{gw})) \end{aligned} \tag{30}$$

Power on the Photodiode

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

1 The equation for output field is

$$E_{out} = i2rtE_0 \cos(k_0 \Delta L) + b_X^+ + b_X^- + b_Y^+ + b_Y^- \quad (31)$$

where b_X and b_Y are the X and Y arm sidebands respectively.

Power on the Photodiode

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 The equation for output field is

$$E_{out} = i2rtE_0 \cos(k_0 \Delta L) + b_X^+ + b_X^- + b_Y^+ + b_Y^- \quad (31)$$

where b_X and b_Y are the X and Y arm sidebands respectively.

- 2 After they recombine, these end up taking the same form, except that the X arm takes a negative sign (the kludge for the antenna response), and they have respective lengths plugged in. For conciseness, I will not write this out, nor the substitution of CARM and DARM.

Power on the Photodiode

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 After doing the summing and some simplification, we can get out the expression for the field:

$$E_{out} = iE_0 \cos(k_0 \Delta L) - i \frac{2k_0 \delta_{off} E_0 \omega_0 h_0}{\omega_{gw}} \sin(k_{gw} \bar{L}) \cos(\omega_{gw} t - k_{gw} \bar{L} + \phi_{gw}) \quad (32)$$

Power on the Photodiode

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 After doing the summing and some simplification, we can get out the expression for the field:

$$E_{out} = iE_0 \cos(k_0 \Delta L) - i \frac{2k_0 \delta_{off} E_0 \omega_0 h_0}{\omega_{gw}} \sin(k_{gw} \bar{L}) \cos(\omega_{gw} t - k_{gw} \bar{L} + \phi_{gw}) \quad (32)$$

- 2 This in turn lets us compute the power due to the GW:

$$P_{gw} \approx 2k_0 \delta_{off} \frac{\omega_0 h_0}{\omega_{gw}} |E_0|^2 \sin(k_{gw} L) \cos(\omega_{gw} t - k_{gw} \bar{L} + \phi_{gw}) \quad (33)$$

and the transfer to the output photodiode:

$$T_{gw \rightarrow P}(\omega_{gw}) \approx k_0 \delta_{off} |E_0|^2 \frac{\omega_0}{\omega_{gw}} \sin(k_{gw} \bar{L}) \exp(-ik_{gw} \bar{L}) \quad (34)$$

Table of Contents

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands
Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

1 Introduction

2 Building Blocks

- Fabry-Perot Cavities
- Michelson Interferometers

3 Gravitational Wave Signal Detection

- Modulation and Sidebands
- Response to a GW

4 Noise Sources

- Quantum Noise
- Radiation Pressure

5 Modern Interferometer Design Elements

Shot Noise

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands
Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 The PSD of shot noise for a DC offset scheme is:

$$S_{P,DC} \approx 2P_0(k_0\delta_{off})^2\hbar\omega_0 \quad (35)$$

And so using the transfer function given previously, one may compute the noise to signal ratio due to shot noise as:

$$NSR = \frac{\sqrt{S_{P,DC}}}{T_{gw \rightarrow P}} = \sqrt{\frac{2\hbar}{P_0\omega_0}} \frac{\omega_{gw}}{\sin(\omega_{gw}\bar{L}/c)} \frac{h}{\sqrt{Hz}} \quad (36)$$

where the unit is the slightly odd strain per root Hz.

Shot Noise

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

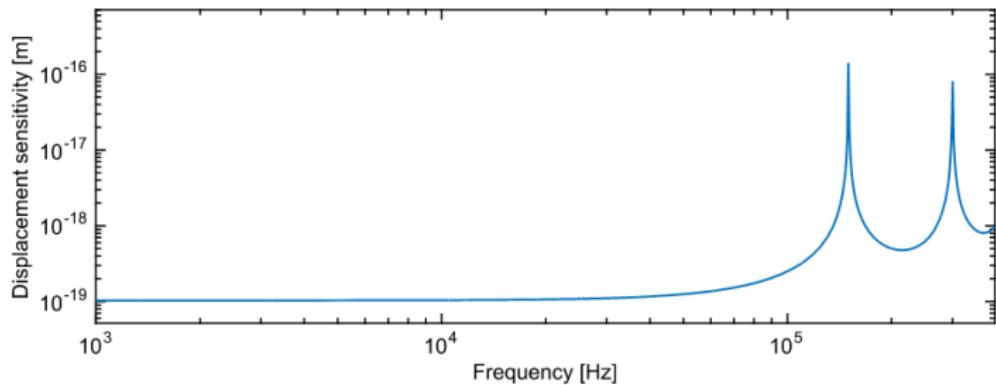


Figure: Shot noise sensitivity limit for $P_0 = 1 \text{ W}$ and $L = 1 \text{ km}$

Radiation Pressure

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Radiation pressure is another fundamental noise source, that of vacuum noise coupling to the mirrors, which results in a power spectral density:

$$S_{\phi,RP} = \frac{8\hbar P_0^3 \omega_0 k_0^2}{M^2 c^2 \Omega^4} \quad (37)$$

Radiation Pressure

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Radiation pressure is another fundamental noise source, that of vacuum noise coupling to the mirrors, which results in a power spectral density:

$$S_{\phi,RP} = \frac{8\hbar P_0^3 \omega_0 k_0^2}{M^2 c^2 \Omega^4} \quad (37)$$

- 2 So the NSR due to this will be

$$\sqrt{\frac{8\hbar P_0}{\omega_0}} \frac{1}{Mc\delta_{off}\omega_{gw}^2 \sin(\omega_{gw}\bar{L}/c)} \quad (38)$$

Radiation Pressure

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Radiation pressure is another fundamental noise source, that of vacuum noise coupling to the mirrors, which results in a power spectral density:

$$S_{\phi,RP} = \frac{8\hbar P_0^3 \omega_0 k_0^2}{M^2 c^2 \Omega^4} \quad (37)$$

- 2 So the NSR due to this will be

$$\sqrt{\frac{8\hbar P_0}{\omega_0}} \frac{1}{Mc\delta_{off}\omega_{gw}^2 \sin(\omega_{gw}\bar{L}/c)} \quad (38)$$

- 3 Notably this *increases* with the square root of power, but it decreases with the square of the frequency, and so is principally a low frequency noise source.

Full Quantum Noise Sensitivity

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources
Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

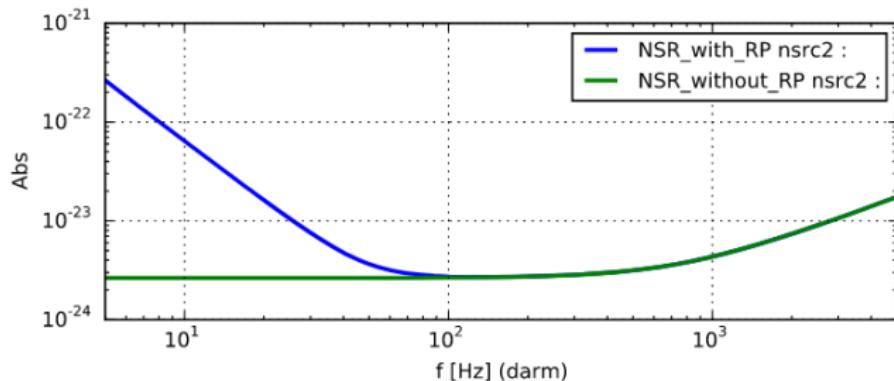


Figure: Sensitivity limits due to both shot noise and radiation pressure

Full aLIGO Noise Breakdown

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands
Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

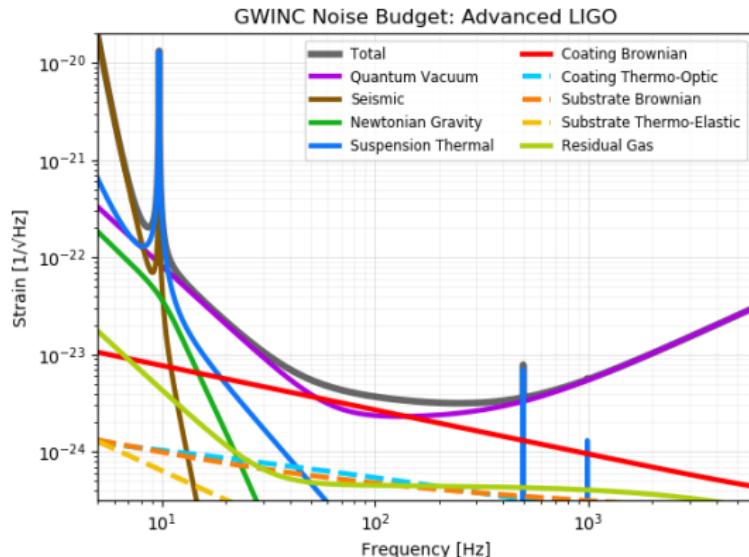


Figure: Breakdown of noise sources in aLigo according to the GWINC model[3]

Table of Contents

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands
Response to a GW

Noise Sources
Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

1 Introduction

2 Building Blocks

- Fabry-Perot Cavities
- Michelson Interferometers

3 Gravitational Wave Signal Detection

- Modulation and Sidebands
- Response to a GW

4 Noise Sources

- Quantum Noise
- Radiation Pressure

5 Modern Interferometer Design Elements

Power Recycling

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands
Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Eventually, you cannot increase laser power without sacrificing stability.

Power Recycling

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Eventually, you cannot increase laser power without sacrificing stability.
- 2 Adding a power recycling cavity (a Fabry-Pérot cavity before the beam splitter) provides gain proportional to the finesse of the cavity:

$$G_{PR} \approx \frac{\mathcal{F}}{\pi} \quad (39)$$

Power Recycling

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

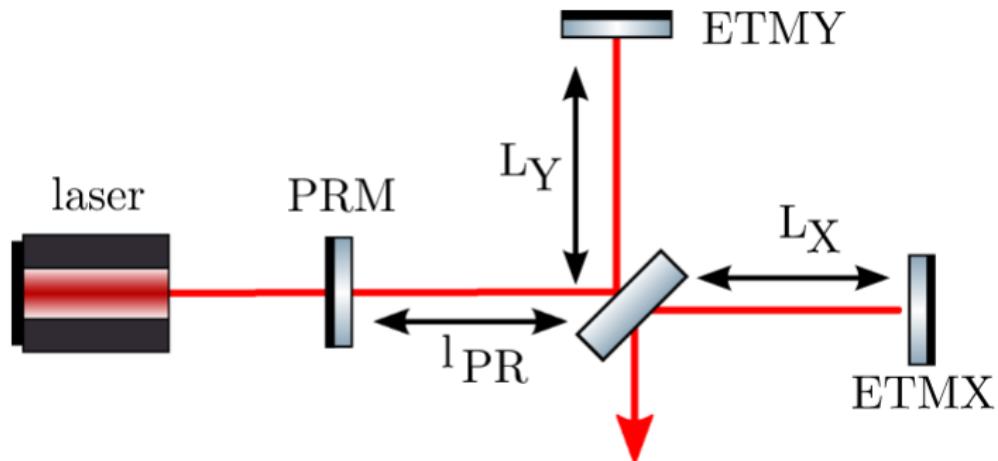


Figure: The layout of an interferometer with a power recycling cavity added

Arm Cavities

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Adding Fabry-Pérot cavities to the arms also provides gain in power

Arm Cavities

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Adding Fabry-Pérot cavities to the arms also provides gain in power
- 2 Moreover, they increase the effective length of the detector arms, which massively boosts sensitivity

Arm Cavities

A Sketch of the LIGO Detectors

Rhiannon
Udall

Introduction

Modern Interferometer Design Elements

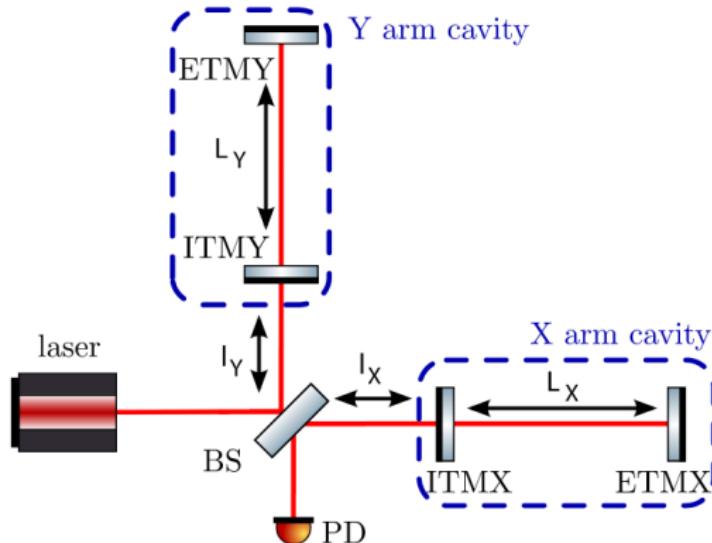


Figure: The layout of an interferometer with arm cavities added

Signal Recycling

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands
Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 A signal recycling cavity is a Fabry-Pérot cavity placed at the output port, which allows for resonant sideband extraction.
- 2 If the finesse of arm cavities above is very high, then a very sharp resonant feature is developed, narrowing the bandwidth.
- 3 The SRC is tuned to an *anti*-resonant operating point, which increases the bandwidth of the detector.

Signal Recycling

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

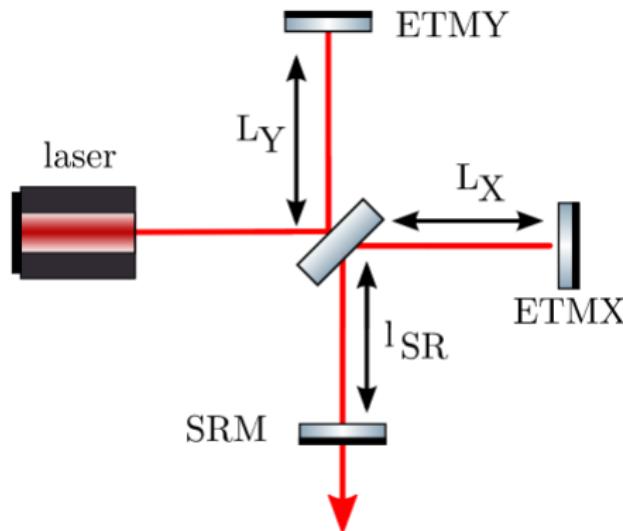


Figure: The layout of an interferometer with a signal recycling cavity added

Effect of tuning

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

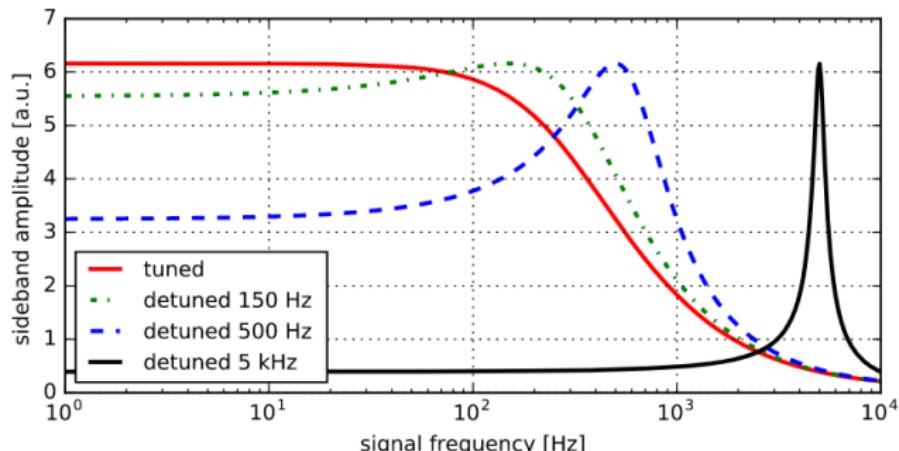


Figure: Sideband amplitude for various tunings of the SRC

Conclusions

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities

Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise

Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Modern GW interferometers enhance the Michelson design with the addition of many optical cavities which serve a wide range of purposes.

Conclusions

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands

Response to a GW

Noise Sources

Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Modern GW interferometers enhance the Michelson design with the addition of many optical cavities which serve a wide range of purposes.
- 2 Careful controls allow for much higher sensitivity than is otherwise possible.

Conclusions

A Sketch of
the LIGO
Detectors

Rhiannon
Udall

Introduction

Building
Blocks

Fabry-Perot Cavities
Michelson
Interferometers

Gravitational
Wave Signal
Detection

Modulation and
Sidebands
Response to a GW

Noise Sources
Quantum Noise
Radiation Pressure

Modern
Interferometer
Design
Elements

- 1 Modern GW interferometers enhance the Michelson design with the addition of many optical cavities which serve a wide range of purposes.
- 2 Careful controls allow for much higher sensitivity than is otherwise possible.
- 3 Considerations of maximizing sensitivity in frequency domains of interest determine the design and operation of the detector, and require constant management of trade-offs.