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What this Talk Covers (and Some of the Things it
Doesn't)
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This talk aims to go past the classic Michelson
interferometer picture, following Bond et al. [2]

Introduction

Accordingly, it includes (brief) introductions to cavities, to
detection schemes, and to noise sources

It does not include a number of things that are really
important to understand the detectors, most notably any
discussion of control systems or mode cleaning
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o Gravitational waves originating from the quadrupolar
Udall moment are given by [1]:

Introduction

2 G d*Q;
i = = 1
v ct D, dt? ( )

G/c* is very small, but scaling with luminosity distance is
inverse, instead of inverse square!

For L shaped detectors, we want to measure:

CLx—Ly

h
L

= Fihy + Fehye ~ 0(1072)  (2)
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E = Eyexp(—ikz) (3)
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Under some assumptions, we can describe light by it's
instantaneous electric field at a fixed time:

E = Eyexp(—ikz) (3)

The complex phase and amplitude are absorbed into Ej

We will be particularly interested in how this interacts with
mirrors, and propagates through space
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Figure: An illustration of the idealized mirror

7/46



Mirrors

A Sketch of
the LIGO
Detectors

We can write out a system of equations for this:

ap = itay + raz (4)

as = itaz + rap (5)
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Mirrors
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Rhiannon We can write out a system of equations for this:

Udall

ar = itay + ras (4)

as = itaz + raz (5)

And rearrange to a corresponding matrix equation

@)-=1C ) Q
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Figure: An illustration of scalar wave propagation through space
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We can once again setup a systems of equations:
ap = aj exp(—ikD) (7)

as = az exp(—ikD) (8)
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Empty Space
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the LIGO
Detectors

Rhiannon . .
Udall We can once again setup a systems of equations:

ap = aj exp(—ikD) (7)

as = az exp(—ikD) (8)

Which has the corresponding matrix equation

(2) N <exp((;kD) exp(gikD)> (Z) (9
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Figure: An illustration of the idealized two mirror system
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Now we can make use of the matrix convenience:

Rhiannon

Udall ao —L -1 n exp(lkD) 0
a - t \—n 1 0 exp(—ikD)
i -1 n an
“h (fz 1> <0>

-1 (et —nne” —net+ne\ [(a
= + - - + (10)
titp \—ne" + ne e —nnmne 0
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Now we can make use of the matrix convenience:

Rhiannon

vdall a\ _ [ (=1 n\ (exp(ikD) 0
aa) tH\-n 1 0 exp(—ikD)
i -1 r an
(e D)
_ 1 et —nnes —net+ne )\ (& (10)
- tito —I‘2€'Jr +ne- e — I’1I’2€+ 0
And solve for the ratio

a —tito exp(—ikD)
a0 1 — rrexp(—i2kD)

(11)
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e We can define free spectral range (FSR):

Detectors

F‘,}I\‘,'IJVLI‘\‘UH FSR — i

and the full width at half maximum (FWHM):

FWHM = 2FSR arcsin (1 _ r1r2>
T

2‘/r1r2
Which together give us the cavity's finesse (F):
F_ FSR T . m
" FWHM T1-
2 arcsin <;\/%> i

where the final approximation assumes high finesse
(r1, ro ~ 1)

(12)

(13)

(14)
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Figure: The frequency dependent power enhancement of an example
Fabry-Pérot interferometer
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of differential arm length.
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Michelson interferometers allow for precise measurements
of differential arm length.

A beam of light is split, sent along perpendicular arms,
then recombined.

Any difference in distance traveled (modulo the
wavelength of the light) results in a phase difference, such
that when recombined the beams destructively interfere.
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e

beam splitter &

Eg

Figure: A schematics of optical fields in a simple Michelson
interferometer
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The outgoing field will be:

Es = Eort [exp <i(¢t+¢r1+¢1)> +exp (i(¢t+q§,2+¢2)>}
(15)
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Ee = Eort [exp(i(d)t—l-d)ﬂ—i-(bl)) +exp<i(¢t+¢,2+¢2)>}
(15)

According to convention ¢ = 7/2, and ¢,1 = ¢,2 = 0.
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Ee = Eort [exp(i(d)t—l-d)ﬂ—i-(bl)) +exp<i(¢t+¢,2+¢2)>}
(15)

According to convention ¢ = 7/2, and ¢,1 = ¢,2 = 0.

So we can simplify and express in terms of common and
differential phase:

o1+ o -
Es = irtEg exp(il—;2>2cos<122> (16)
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Aoty

symmetric port ETMX

anti-symmetric port

Figure: A schematic of the prototypical Michelson interferometer
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The anti-symmetric port electric field is given by

Es = Eoé(exp(i2kLy) + exp(i2ka)> (17)
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Es — Eoé(exp(iZkLy) + exp(i2ka)> (17)

For differential arm length (DARM) AL = Ly — Lx one
can compute out

S = EsEs* = Pycos®(2nAL/\) (18)
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B The anti-symmetric port electric field is given by

Es — Eoé (exp(iZkLy) + exp(i2ka)> (17)

For differential arm length (DARM) AL = Ly — Lx one
can compute out

S = EsEs* = Pycos®(2nAL/\) (18)

Power depends only on DARM, not on the lengths
themselves, and has minima known as dark fringes
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E = Egexp (i(wot + mcos(Qt))) (19)

under the assumption that m is small.
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E = Egexp (i(wot + mcos(Qt))) (19)

under the assumption that m is small.

With the magic of Bessel functions, you can do an
approximation under this case to the second order

: m*> .m , :
E ~ Eyexp(iwpt) 1——+15 exp(—iQ2t) +exp(iQt)

4
(20)
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Phase Modulation
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e Phase modulations are signals on top of the carrier which
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E = Egexp (i(wot + mcos(Qt))) (19)

under the assumption that m is small.

With the magic of Bessel functions, you can do an
approximation under this case to the second order

, m? .m . ,
E ~ Epexp(iwpt)|1— e + i exp(—iQ2t) +exp(iQt)
(20)
Importantly, GWs manifest themselves in the detectors as
a phase modulation on the carrier beam, giving rise to

signal sidebands
21/46
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Figure: A schematic of sidebands in a Michelson inteferometer, and
the effect of tuning on the carrier and the sidebands
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Homodyne Detection

A Sketch of
fhe LIGO If we sit at exactly the dark fringe, the signal sidebands
Rhiannon will have nothing to beat against. LIGO handles this with
Uda . . .
- the homodyne detection scheme, introducing a small DC

offset do from the dark fringe:

T
AL = 2ko + Ooff (21)

Plugging this in along with our GW induced sidebands
gives:
E = irtEy exp(i2koL) exp(iwot)(2 cos(koAL) + s 4 s7)

= irtEy exp(i2koL) exp(iwot)(2sin(kodogr) + 5T +57)
(22)
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Solving for the power gives
P = EE* = TR|E|? <4sin2(k050ff)

(23)
+2sin(kobor)(sT +57) + 0(52))
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Udall Solving for the power gives

P = EE* = TR|E|? <4sin2(k050ff)
(23)
+2sin(kodof)(sT +57) + 0(52)>

Notably, we need this DC offset for the sidebands to be
visible at all. Control systems are used to maintain the
interferometer in this state.
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Consider a simplified gravitational wave

h(t) = ho cos(wgwt + Ggw) (24)
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Rhiannon Consider a simplified gravitational wave

Udall

h(t) = ho cos(wgwt + Pgw) (24)
We can compute the phase shift due to the gravitational
wave with:
wo t
¢ =—kolL F = h(t) = —koL F ¢

2 t—L/c

h L L (25)
w w [ w
5 = w(;.,.f) cos (wgw + Ogw — gz ) sm( g"cv )
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Sidebands due to a GW
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AN We can identify the elements of phase modulation within

e the equation for §¢:
Rhiannon
Udall WOhO ) (kng>
Mgy = — sin| —=—
Wlfw , ¢ (26)
d = — g;/ + ¢gw
Which allows one to work work out terms from the
sideband equation:
m woho . [ kewl
A = aw = — g
& 2 2wWew Sm< c
T Koy L 27
¢§W—2—Lkoi(— 5 +¢gw> 27)
afgtw = Agw exp(id);tw) exp(Eiwgwt)
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a3 L az
-— »

Figure: A schematic of the propagation of the carrier beam and the
signal sidebands in one interferometer arm
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a3 = ap exp(—ikol)
a> = fetmal (28)
a; = agexp(—ikol)
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o Proceeding, the carrier beams satisfy:

Udall

a3 = apexp(—ikol)
a2 = letmal (28)
a; = agexp(—ikol)

And the sidebands satisfy:

bit = aoa;,tw
b¥ = reembi (29)

by = by exp(—i(ko £ kgw)L) + 2205,
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Aianen m This works out to give

Kow L
bgt = 2retmaoagw exp( —ikgLF i g2 >

xcos( 'kng)
1
T (30)

h
= —jTetmI0Y0T0 i (kgw L) exp(—i2koL)
2Wew

X exp(Ei(wgwt — kgwl + dgw))
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Eour = i2rtEg cos(koAL) + b}; + by + b;L, + by, (31)

where bx and by are the X and Y arm sidebands
respectively.
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Power on the Photodiode

The equation for output field is

Eour = i2rtEg cos(koAL) + b}; + by + b;L, + by, (31)

where bx and by are the X and Y arm sidebands
respectively.

After they recombine, these end up taking the same form,
except that the X arm takes a negative sign (the kludge
for the antenna response), and they have respective
lengths plugged in. For conciseness, | will not write this
out, nor the substitution of CARM and DARM.
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Eout = iEg cos(kgAL) — i———————sin( kg L
out ( ) Waw ( gw ) (32)
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Power on the Photodiode

A Sketch of

e LIcO After doing the summing and some simplification, we can

Detectors get out the expression for the field:
Rhiannon
Ve , 2ko0off Eowoho . -
Eout = iEg cos(kgAL) — i———————sin(kgy L
out ( ) wgw ( gw ) (32)

cos(wgwt — kng + Pgw)

This in turn lets us compute the power due to the GW:

h —
Paw = 2kodofr (:0 0| Eo[? sin(kgw L) cos(wewt — kgwL + dgw)
gw
(33)
and the transfer to the output photodiode:
wo . - I
Tgwsp(Waw) ~ ko(soff|Eo\2w—° sin(kgwL) exp(—ikgw L)
gw
(34)
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Udall The PSD of shot noise for a DC offset scheme is:
Sp.pc ~ 2Po(koSofr)* o (35)

And so using the transfer function given previously, one
may compute the noise to signal ratio due to shot noise as:

S 2 w h
NsR = Y/2P0C :\/ -2 (36)
Tgw—p Powo sin(wgwl/c) v/ Hz

where the unit is the slightly odd strain per root Hz.
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Figure: Shot noise sensitivity limit for Pp=1 W and L =1 km
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Radiation Pressure

A Sketch of
he LIGO . . . .

g Radiation pressure is another fundamental noise source,
Rhiannon that of vacuum noise coupling to the mirrors, which

Udall . .
results in a power spectral density:

8hP3wok?
So.RP =y (37)
So the NSR due to this will be
8P, 1
: (38)

wo Mcdofrw?,, sin(wewl/c)

Notably this increases with the square root of power, but
it decreases with the square of the frequency, and so is
principally a low frequency noise source.
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Figure: Sensitivity limits due to both shot noise and radiation pressure

Radiation Pressure
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Figure: Breakdown of noise sources in aLigo according to the GWINC
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Power Recycling
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Rhiannon

el Eventually, you cannot increase laser power without
sacrificing stability.

Adding a power recycling cavity (a Fabry-Pérot cavity
before the beam splitter) provides gain proportional to the
finesse of the cavity:

7

GPR ~ (39)
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Figure: The layout of an interferometer with a power recycling cavity
added
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Adding Fabry-Pérot cavities to the arms also provides gain
in power

Moreover, they increase the effective length of the
detector arms, which massively boosts sensitivity

Modern
Interferometer
Design
Elements

41/46



Arm Cavities

A Sketch of
the LIGO -
Detectors ’ |:|\ Y arm cavity

R lET™Y|
Udall l
|
| Ly |
' |
IITMY |
\_=>
X arm cavity
laser IYi ly g==————— -~
=)
|
|
BS JITMX ETMX!
PD
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Signal Recycling

the output port, which allows for resonant sideband
extraction.

If the finesse of arm cavities above is very high, then a
very sharp resonant feature is developed, narrowing the
bandwidth.

The SRC is tuned to an anti-resonant operating point,
which increases the bandwidth of the detector.

A signal recycling cavity is a Fabry-Pérot cavity placed at
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Figure: The layout of an interferometer with a signal recycling cavity
Modern
added
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Figure: Sideband amplitude for various tunings of the SRC
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Modern GW interferometers enhance the Michelson design
with the addition of many optical cavities which serve a
wide range of purposes.
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Modern GW interferometers enhance the Michelson design
with the addition of many optical cavities which serve a
wide range of purposes.

Careful controls allow for much higher sensitivity than is
otherwise possible.

Considerations of maximizing sensitivity in frequency
domains of interest determine the design and operation of
the detector, and require constant management of
trade-offs.

Modern
Interferometer
Design
Elements
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