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1 Introduction

Second generation ground based gravitational wave interferometers - LIGO, Virgo, and KAGRA - represent
one of the most significant achievements in human history. They are the most sensitive scientific observing
instruments ever constructed, and represent the culmination of decades of work. As one might expect, they
are also fiendishly complex, to the point that fully understanding even one part of their construction and
operation is the content of a PhD. The aim of this talk is to provide an introduction to the LIGO detectors,
one step past that which is usually presented. There will be massive omissions in this talk, including
both controls systems and mode cleaning, which are absolutely critical elements of the detector. However,
attention will be given to the use of cavities to enhance the detector, the actual behavior of the detection
scheme, and some of the fundamental noise sources in the detector. In what is covered, this follows Bond et
al [1], but that review article is much more extensive, and is worth a look for the interested. All figures are
also taken from that review article, and all intellectual credit should be paid due to its authors.

1.1 Gravitational Waves in Brief

Gravitational waves are distortions in spacetime, generated whenever there is a change in mass moments of
quadrupolar order or higher. For a quadrupolar (the dominant radiation mode), the strain may be written
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Where G and c are the standard constants, Dy, is the luminosity distance, and @);; is the mass quadrupolar
moment of the system. Two pieces are important here: first, the magnitude is principally is G/c* - very
small! The second is that the scaling with distance is only inverse, instead of an inverse square. Thus, even
though the strain is intrinsically small, it scales much better with distance than electromagnetic sources
do. In order to compensate for this, the second derivative in time of the quadrupolar moment must be
exceptionally large. There are many ways this can be sourced, but so far (due partially to astrophysics and
partly to the nature of the detectors) we have only seen GWs from compact binary coalescences - that is the
merger of a black hole or neutron star with another black hole or neutron star.
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Figure 1: An illustration of the idealized mirror

The next question one may ask is: what is this strain of which you speak? Strain as written above
is a tensorial quantity. Through some math this talk will not be going into, this may be written in two
components: hy and hyx, which are typically of similar magnitudes The important bit here is that the
detectors we will be discussing have a characteristic response, called the antenna response. For Michelson
interferometers like ours, this combines as:

_ Lx—Ly
T L

Where Ly, Ly are the lengths of respective arms, and L is the typical detector length. So, our goal is
to measure extremely small - O(1072!) - differences in the lengths of the detector arms.

h = Fyhy + Fyhy 2)

2 Building Blocks: Cavities and Michelson Interferometers

2.1 Fabry-Perot Cavities

Let’s recall some electromagnetism. We can characterize light by it’s electric field, which - if we ignore
polarization and assume propagation along the z-axis - can give

E = R(Ejexp(i(wt — kz)) (3)

Where Ej is a complex number that folds in the initial phase. For this we will be interested in the
instantaneous field at ¢ = 0, and will focus on the complex amplitudes, so

E = Ejexp(—ikz) (4)

2.1.1 Interaction with Mirrors
Now, how will this interact with mirrors, or propagate through space? For mirrors we have the setup in

Figure 1. We can write out a system of equations for this:

ag = itay + rag (5)

ay = 1tag + raq (6)

Here we assume that transmission applies a phase shift of /2. [1] has an elaborate explanation of why
this assumption will generally hold, but for our purposes we're just going to accept it. We will similarly
assume that these are lossless mirrors, so that 72 4+t = 1.

For reasons which will become apparent in a moment, let’s also rearrange these equations a bit:

i
ay = E(rag — az) (7)

71 . )
a4 = ?(’I"Clz; —ag) +itaz = g(a3 —ras) (8)

We can reframe this as a matrix equation:
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Figure 2: An illustration of scalar wave propagation through space

mirror 1 mirror 2
!
ag ap aq as
¥ > ¥ ¥ optical axis
< - -
a4 ‘ ”“ri as |
T, tl D 72, t2

Figure 3: An illustration of the idealized two mirror system

2.1.2 Propagation Through Space
Now for propagation through space, we have the illustration in Figure 2. This gives the system of equations:
as = ay exp(—ikD) (10)

ay = azexp(—ikD) (11)

Rearranging a bit is trivial, to get the matrix form for this system:
a1\ _ (exp(ikD) 0 a (12)
ay 0 exp(—ikD) as

2.1.3 Two Mirror Systems

Now, let’s consider a two mirror system, seen in Figure 3. Here the second mirror has no field incoming from
the right side, so az = 0. The beauty of matrix optics is now revealed: to solve the entire system we simply

have
ap\ _ ¢ (=1 71\ (exp(ikD) 0 (=1 72\ (a2 (13)
as)  t \-m1 1 0 exp(—ikD) ) t, \—ro 1 0

Which reduces to

ao\ _ =L ( exp(ikD) — rirzexp(—ikD)  —ryexp(ikD) + riexp(—ikD)\ (a2 (14)
ay tita \—r2exp(ikD) + ryexp(—ikD)  exp(—ikD) — riryexp(ikD) 0

Which lets us get the expression ratio of the transmitted amplitude to the incoming amplitude:

as - —tth exp(—sz)
ap 1 —rirgexp(—i2kD)

(15)

At this point, you are probably saying to yourself “well that’s all well and good, but you know, why
exactly?” The two mirror system is a Fabry-Pérot interferometer, which has some very important properties.
Setting the distance D be the length of the arm L, we can see that if kL = N7 for N € Z, then we have a
resonance. If instead kL is a half integer multiple of 7, then we get an anti-resonance instead. The frequency
offset between peaks is called the free spectral range, or FSR, and may be found by

C
FSR = - (16)

We can similarly find the line width, or frequency width at half mazimum (FWHM), which is

FWHM = 2E5R arcsin(l_m> (17)
s 2./r17rs

Together, these also define the finesse of the cavity:

e FSR _ T (18)
FWHM 1=y
2 arcsin 2\/%
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Figure 4: The frequency dependent power enhancement of an example Fabry-Pérot interferometer

Which for 71, ro near 1 (a high finesse cavity) approximates to:

T

F~ 1-— r172 (19)
As one may note, when a Fabry-Pérot cavity is on resonance, the transmitted power is much higher than
the input power (see Figure 4. Thus we can essentially “step up” the laser power by this method, at the
cost of having added degrees of freedom in our setup which must be controlled. Furthermore, photons in a
cavity may traverse the length many times before they are eventually transmitted. For gravitational waves,
where maximizing L for fixed strain magnitude h lets us observe AL of greater magnitude, this is very
advantageous.

2.2 Michelson Interferometers

2.2.1 Output Field due to Phase Shifts
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Figure 5: A schematics of optical fields in a simple Michelson interferometer

Now we can talk about Michelson interferometers, the other essential type of optical configuration in the
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LIGO interferometers. Figure 5 is a schematic of the fields in a simple Michelson interferometer. We’ll skip
the rigmarole of getting the field elements, to write out the one most relevant to us:

Eg = Eort {exp <i(¢t + ¢r1 + <I>1)> + exp (i(qﬁt + ¢r2 + <I>2)>} (20)

By some arguments we also won’t go into, we can choose a convention of ¢ = 7/2, ¢r1 = ¢ro = 0 (this is
the same as convention of introducing a factor of ¢ during transmission which was used above). Meanwhile,
@, and P, are the phase difference picked up along the Y and X arms respectively. So, you can simplify
this and combine the common and differential elements:

o+ P -
FEg = irtEyexp (il—gz)2cos<122> (21)

2.2.2 CARM and DARM in the Idealized Case

Michelson interferometers measure differential arm length by splitting light into two perpendicular beams,
sending them along a set of arms, then recombining them. If the beams have travelled different lengths
(modulo the light’s wavelength) then they will pick up a relative phase, and hence destructively interfere
with each other when recombined. For an idealized interferometer with a monochromatic laser and perfect
50:50 beam splitter (see Figure 6), we can write the field at the detection photodiode (the anti-symmetric
port) as:

Es = EO% (exp(iQkLy) + exp(i2kLX)> (22)
Defining common and differential arm lengths as
- L L
jo v tlhx (23)
2
and
AL=Ly — Lx (24)
respectively, and noting that
d, = 2kL; (25)
we can reduce the above to -
Eg = Eypiexp(i2kL) cos(kAL) (26)
so that the intensity of the signal will be
Py cos®(2rAL/N) (27)

When this is nearly 0 then the interferometer is on a dark fringe, and when it is nearly P, the interferometer
is on a light fringe. Modern interferometers are operated at or near the dark fringe, for reasons which we
will go into shortly.
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Figure 7: A schematic of sidebands in a Michelson inteferometer, and the effect of tuning on the carrier and
the sidebands

3 Gravitational Wave Signal Detection

3.1 Modulation and Sidebands
3.1.1 Phase Modulation

Now, the next order of business is a digression about phase modulation. A phase modulated signal when a
carrier field E;, = Eyexp(iwgpt) is modulated to

E = Eyexp (z’(wot +m cos(Qt))) (28)

To handle this mathematically we can invoke Bessel functions of the first kind (you remember those, surely?)
by the identity:

o0

exp(izcos(¢)) = Y i*Ju(2) exp(ike) (29)

k=—o00

For small modulation indices we can approximate the bessel functions by:

n=0
Making use of the identity J_;(m) = (—1)*Jx(m), we can get a second order expression for the phase
modulated field:
m? m
E ~ Ejexp(iwpt) [1 -1 + 25 (exp(—iQt) + exp(iQt))} (31)

Notably, this field now has sidebands at +£2.

3.1.2 Sidebands and Michelson Interferometer Tuning

Now, to consider how sidebands work in Michelson interferometers, take note of Figure 7. Per the equation
derived above, we see that at 7/2 and 37/2 tunings, the carrier power is minimized. So too is the laser
noise, which is a common sideband source across all legs. What is interesting is that the signal sidebands are
mazimized; to understand why this is, recall our phase convention. Transmission through a mirror introduces
a phase of 7/2, which reflection does not. The carrier and laser noise side bands will get a phase shift when
entering the X arm, and when leaving the Y arm, such that they end up in the same phase. By contrast, the



signal sideband will only experience a phase shift in the Y arm, so if no tuning is applied it will be perfectly
out of phase and destructively interfere, whereas if there is a 7/2 phase applied it will suddenly be perfectly
in phase and constructively interfere.

3.1.3 The Homodyne Detection Scheme

Figure 7 shows that noise is minimized and signal maximized at the dark fringe, but there is a bit of a
catch. The absolute magnitude of the signal sidebands is very small, and so to improve detectability we need
something to beat against. There are a number of solutions to this problem, but the one used by LIGO is
called a homodyne scheme. Essentially, the interferometer is held very slightly off of the dark fringe - how
that is done has to do with the control systems, so let’s just say we can do it and leave it at that for now. So

e
AL = %-l—(soff (32)

for kg = wo/c (the wavenumber of the carrier field). The DC offset d,7s is held at a very small but
non-zero value. Using equations 21 and 31 we can write this as

E = irtEyexp(i2ko L) exp(iwot) (2 cos(koAL) 4+ s + s7)

_ 33
= irtEqexp(i2ko L) exp(iwot) (2 sin(kodors) + st +57) (33)
from which we can get the transmitted power:
P = EE* = TR|E,|? (4 sin®(kodos ) + 2sin(kodops) (st +57) + 0(32)> (34)
Hence we see the necessity of including a bit of the carrier signal.
3.2 Response to a GW
We can compute the phase due to an impending GW:
wo t
6=-kLFD [ h(t)= kI F6 (35)
t—L/c
Considering a very simple gravitational wave:
h(t) = ho cos(wgwt + Pguw) (36)
We can compute
wohg WgwL . WgwL
§¢ = o cos (wgw + Pguw — 920 ) sm( 920 ) (37)
Going back to our phase modulation equation 28 we can identify
h kgwlL
Mgw = _ “ofto sin( g ) (38)
Wow c
and o I
D= —% + dguw (39)
where kg, = wgqy/c. So we can proceed and work out
mgw OJOh() . k wL
Ay = L = — g 4
g 5 D sm( p ) (40)
+ m kng
U 5~ Lkoj:< = + ¢gw> (41)
a;tw = Ay exp(i@_f]tw) exp(tiwgy,t) (42)

Now looking to the schematic in Figure 8, we can write out the expressions for each optical propagation
element:

a3 = ag exp(—ikoL) (43)

a2 = Tetm a1 (44)

a; = ag exp(—ikoL) (45)

and

b = aoagiw (46)

b2jE = T’etmb1i (47)

b = b exp(—i(ko + kyw)L) + aga;tw
= 2retmaoozgiw exp( —ikoL F 1 kg;}L> cos( F ikg;L> (48)
= —iw sin(kguw L) exp(—i2ko L) exp(+i(wgwt — kgwl + ¢gw))
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Figure 8: A schematic of the propagation of the carrier beam and the signal sidebands in one interferometer
arm

Now, for each arm respectively

bE =03 (L = Lx,a0 = itEp) (49)
and
b =i (L = Ly, ap = rEp) (50)
So that
Eout = i2rtEy cos(kgAL) + b% + by + by + by (51)

After recombining in the output port, these go to

’I"tEoUJQhO

by = o sin(kgy Ly ) exp(—i2ko Ly ) exp(Fi(wguwt — kgw Ly + dgw)) (52)
gw
rtEowoho . ) .
b§( = —722) 070 sin(kgwLx ) exp(—i2koLx ) exp(i(wgwt — kgwLlx + ¢gw)) (53)
qw

The negative sign on the X arm is our kludgy implementation of the antenna response to this polarization.
Now, we can switch this to CARM and DARM, and assume a perfect 50:50 splitter. Furthermore, LIGO
detectors are set to kgw >> AL, such that kgw(i +AL/2) = kgwi. So, taking all this and summing, we
get the field (also using the fact that for our homodyne scheme sin(2kgAL) =~ 2kodos s

2kod, 1t Eowoh.
_ ;2N0%f 0Wo 0

Eout = iEq cos(koAL) o in(kgwL) cos(wgwt — kguwL + ¢gu) (54)
and power due to the gravitational wave is
Pgw = 2kodoyy L:OhO | Eol® sin(kgw L) cos(wguwt — kguwL + dgu) (55)
gw
This also gives the transfer function
Tyums (W) % koos s | Bol? == sin (kg L) exp(—iky, L) (56)

quw

4 Noise Sources

4.1 Shot Noise

Shot noise is a fundamental source of noise due to vacuum fluctuations - it can never be removed, but
increasing the circulating power in the detector allows us to mitigate it. The noise PSD due to shot noise is
given by:

SP,DC ~ 2P0(]{3050ff)2th (57)

Combined with the noise transfer function given in equation 56, we can get the noise signal ratio:
v/Sp.pC \/ 2h w h
NSR = — = —— 58
Tyw—spr Pywo sin(wgwL/c) vVHz (58)

Importantly, this decreases with the square root of carrier power, and has a sharp feature at the free spectral
range of the arm (though this doesn’t come up very often in the LIGO detectors, since noise is already to
high for detectability by then). Figure 9 shows what this looks like.
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Figure 10: Sensitivity limits due to both shot noise and radiation pressure

4.2 Radiation Pressure
Radiation pressure is another fundamental noise source, which results in a power spectral density:

8hP5°’wo/€8
M?2c204

|8h Py 1
- 60
wo doffMecw?, sin(wgywL/c) (60)

Notably this increases with the square root of power, but it decreases with the square of the frequency,
and so is principally a low frequency noise source. The combined effect of radiation pressure and shot noise
can be seen in Figure 10. The full noise breakdown of the aLigo design (note, this is not the same as what
actually exists) is seen in Figure 11

So the NSR due to this will be

5 Modern Interferometer Design Elements

5.1 Power Recycling

As can be seen in the above discussion of shot noise, if we wish to decrease our noise floor it is necessary to
increase our power. However, increasing the raw laser power past a certain point begins to sacrifice stability
to an unacceptable degree, and so it is desirable to instead amplify the laser by optical methods. This is the
purpose of the power recycling cavity, which essentially ”catches” power leaking from the symmetric port
and puts it back into the detector. This provides a gain in power proportional to the finesse of the PRC:

f
0
Figure 12 shows what this looks like schematically.

5.2 Arm Cavities

Adding Fabry-Pérot cavities to the arms of the detector also allows an increase in power, both in the carrier
and, to an even greater extent, the signal sideband. Moreover, they increase the effective length of the arms,

since photon lifetimes within the arms are significantly increased. Figure 13 shows the schematic of what
this looks like.
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Figure 12: The layout of an interferometer with a power recycling cavity added
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Figure 15: Sideband amplitude for various tunings of the SRC

5.3 Signal Recycling

A signal recycling cavity is a Fabry-Pérot cavity placed at the output port, which allows for resonant
sideband extraction. If the finesse of arm cavities above is very high, then a very sharp resonant feature is
developed, narrowing the bandwidth. The SRC is tuned to an anti-resonant operating point, which increases
the bandwidth of the detector. The design of this may be seen in Figure 14. The effect of tuning on the
sideband sensitivity can be seen in Figure 15.
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