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What is and Why GRMHD?

GR M HD

T X

Including GR effects, e.9.  Including (often strong) Including matter, i.e.
Strong gravity, compact magnetic fields across astrophysical plasma
objects, relativistic jets different scales (conducting fluid)



Electromagnetism Fluid Dynamics

Magnetohydrodynamics




Where do we apply GRMHD?

Accretion disks around black hole

Relativistic jets and gamma-ray bursts

Binary neutron star or neutron star-black hole mergers
Supernovae or collapsar




Why we can model astrophysical plasma as fluid?

e The plasma is collisional, so that collective behavior of the plasma dominates
e The simulation scale is much larger than the microscopic scales of plasma
e Thermodynamic Equilibrium is established locally

Cases where MHD approximation fails

e Collisionless plasmas (e.g. solar wind, certain regions of ISM), we need to
solve full Vlasov equations

e Small scales (e.g. magnetic reconnection), often studied with PIC simulations

e Ultra-strong magnetic fields, Turbulence, etc.



Let’s start from MHD

Continuity equation (conservation of mass)
dp

4 V. =0
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Equation of motion (conservation of momentum)
p<%+V°V>V=JXB—Vp

Induction equation

%—?ZUV2B+VX(VXB)

Equation of state (close the system)

Constraint of magnetic field



Now let’'s move to GR spacetime

Use covariant derivatives to rewrite MHD equations
Continuity equation (conservation of rest-mass)
Conservation of energy-momentum

Vulpu")=0, V,TH =0.
Maxwell’'s equations

To close the system, we need to specify the stress-energy tensor, and EoS.

TH,V = TI#V _|_ ]}“V



3+1 decomposition of spacetime

e The four-dimensional spacetime is splitted into 3D hypersurfaces + 1D
timelike normal vector
e The metric is expressed in

(——Ozz—i-ﬁiﬁi ﬁz)
8uv =
Bi Yij

e The normal vector is
ny = (—,0,0,0)
nu = l (la _Bl)
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(we have gauge freedom) Mizuno & Rezzolla



Eulerian frame and comoving frame

e In the 3+1 metric, tensor can be projected both parallel to the normal vector
and on the hypersurface, e.g. 4-velocity

ut =wn* +W)

Each physical quantity can be expressed

in Eulerian frame or in fluid comoving frame
FH — yte¥ — yVet — el 0y, by

F* = ntE” —n"E* — e#*nyB;

Mizuno & Rezzolla



How to solve numerically?

e To solve the equations numerically, we have to make sure that they can be
written into hyperbolic (i.e. well-posed) formalism.

e Generally, if the coefficient matrix of a set of conservative time-evolution
equations is diagonalizable into a set of real eigenvalues, it is well-posed.

oU+A- VU =S
e Furthermore, if the coefficient matrix is the Jacobian of some flux vector

oU+VFU)=S
e The set of variables here are called conserved variables, which are nonlinear
combination of primitive variables. We now try to rewrite the equations into
such conserved formulation.



Conserved (Valencia) formulation

We use the continuity equations as an example

Vi (o) = =2 (v/=gpe")
= 75 [0 (Vom0 (Vs =

Use the 3+1 decomposition of 4-velocity u# =W (n* +v*)

O (/AW + iAW (v’ — )] = 0
Define D = pW , we have

o (v/¥D) +9; [/1D (a' = B')| =0



Conserved formulation (ideal MHD limit)

Similar to the continuity equation, we can write the conservation of
energy-momentum, as well as induction equation into conserved formalism

0i(vAU) + 8i(AF*) = 7S
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Don’t forget the convergence-free constraints on magnetic fields.



Couple to spacetime evolution

Z4c (3+1 decomposition of Einstein’s equation + conformal transformation)
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Numerical implementation

e Several codes have been implemented to solve GRMHD equations
numerically, e.g. Athena++/Athenak, lllinoisGRMHD, WhiskyMHD

e During the initialization stage, the code typically read data from external initial
data library, e.g. Lorene for BNS merger. The initial data should satisfy the
constraints both for spacetime evolution and MHD evolution.

e General steps during one time-evolution step

Update metric variables and enforce constraints

Reconstruct variables and solve the Riemann problem at cell interfaces
Add source terms and update conservative variables

Enforce divergence-free condition

Apply primitive recovery and flooring schemes

Compute the stress-energy tensor and feedback into Einstein’s equations.
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Numerical scheme—Reconstruction

Goal: Given cell-centered value, construct high-order accurate “left” and “right”
states at each cell interface.

e \Widely used methods: PLM (piecewise linear) and PPM (piecewise parabolic)
o Key steps:

o Compute (limited) slopes within each cell
o  Construct a polynomial (linear, parabolic, or higher) approximation inside the cell
o Evaluate the polynomial at the left and right faces of the cell

e Difficulties:
o Near shocks/discontinuities, reconstruction might degrade to first-order accuracy, and limiter
must be designed so that no spurious oscillations would happen
o Near vacuum floors might render large errors
o Coordinate singularities and mesh refinement boundaries need special treatment



Numerical Scheme—Riemann solver

Goal: At each cell interface, given the reconstructed left
and right states, solve the local Riemann problem to
compute fluxes across the interface.

e Algorithms: HLLE, LLF, WENO-Z, etc. Often
approximate solvers
e Key steps:

o Calculate/approximate the wave speed of different modes

o Calculate the numerical fluxes from left and right states, as well
as the wave speeds

e Difficulties:

o Complex wave structure in GRMHD (fast, slow, Alfven, etc.)
which is hard to distinguish
Strong gravitational fields might cause extreme wave speed
Exact GRMHD Riemann solver is prohibitively complicated,
approximate solvers do not track each wave exactly
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Numerical scheme—Constrained transport

Goal: Numerically evolve the magnetic field such that
the divergence-free constraint is guaranteed on
machine-precision level.

, d
e From Faraday'slaw faceB'dA:‘]g(m)E'dl

e This automatically guarantees the divergence-free l

constraint of B field

?{ B-dA =0
ov

e In this case, we stagger the value of magnetic field \

to face center, and reconstruct and calculate the
numerical flux on face interface, i.e. edges
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Numerical scheme—Primitive recovery

Goal: Compute primitive variables (which are then used to calculate fluxes using a
Riemann solver) from conservative variables

e Cons. are nonlinear functions of prim., so iterative root-finding methods are
often used

e Specialized methods can be used to reduce number of unknowns, or
effectively bracket the root

e Tabulated nuclear physics equation of state adds more complexity to the
root-finding process

e Effective flooring schemes need to be implemented to avoid unphysical
results



Add more physics?

Beyond the ideal MHD limit, we want to incorporate accurate microphysics

(@)

Resistivity (magnetic reconnection, laboratory plasmas)
m Add diffusion terms to the induction equation
Viscosity (accretion disks, differential rotation, turbulence)
m Add viscous stress tensor to momentum equation
Neutrino physics (core-collapse supernovae, neutron star mergers)
m Add stress-energy tensor of neutrinos, often captured by leakage scheme
Finite-temperature EoS (shock heating, SNe cores, BNS merger)
Radiation transport (gamma-ray bursts, super-eddington flows, AGN)
m Add stress-energy tensor of radiation field

Magnetotail




Current limitations

Extreme spatial scales and AMR complexity
Microphysics and complex equations of state
CPU/GPU parallel scalability

Uncertain and limited initial conditions
Boundary conditions and outflows
Turbulence at small scale and reconnection



Subgrid dynamo

Goal: effectively simulate the evolution and amplification of magnetic field during
astrophysical processes without going to ultra-high resolution

e Mean field dynamo  E' = _gijk@j[;k — (6v x 5B)!
(6v x 6B)' ~ a’B/ — fie'7%0;By,
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Summary and Takeaways

e GRMHD combines the principles of general relativity,
magnetohydrodynamics, and astrophysical plasma physics

e GRMHD simulations are widely used in systems such as black hole accretion
disks, relativistic jets and gamma-ray bursts, binary neutron star mergers, and
core-collapse supernovae

e The numerical stability requires well-posed hyperbolic systems

e Several advanced numerical schemes are implemented, including
reconstruction, Riemann solver, constrained transport and primitive recovery

e Extreme spatial and temporal scales demand further computational
techniques as well as hardware development

e More accurate model of microphysics is needed



