Searching for Evidence of
Cosmic Inflation with
BICEP Array
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History of the Universe
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History of the Universe
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Cosmic Microwave Background (CMB) Experiments

The CMB traces the conditions
of the universe at the time when
atoms first began to form.

Precision measurements of the
CMB temperature have provided
a wealth of cosmological
information consistent with the
inflationary paradigm.

However, any imprint of the
inflationary gravitational waves
have so far eluded detection in
the CMB.
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Creating E and B Power Spectra

The first step is creating maps of the Stokes parameters Q and U, conventionally
defined as

I=(|Ed|?) + (| Ey*)

0= (|E:*) — (IEy)

U = 2|E||E| cos(5))

Full sky complex fields QiU can be decomposed into spherical harmonics, and
E and B are simply related in Fourier space to the Q and U spectra as

The rotation angle here is twice the polar angle of each Fourier mode i.e.

(= (Ux,€y) = (€cos@.lsing)
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BICEP/Keck Sky Patch

One of the main advantages of observing from the south pole is we get to make
very deep maps of one patch of sky, which we call the BICEP/Keck sky patch.

BICEP3

This patch of sky is comparatively quite low in galactic dust signal, it is centered
at RA Oh, Dec. -57.5¢



BK18 Dataset

Keck Array @ 95, 150, 220 GHz BICEP3 @ 95 GHz
e Observed from 2012-2019 e Observing since 2016
e Based on BICEP 2 design e Significantly more sensitive

than Keck receivers
e Model for BA receivers
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150 GHz T Noise

150 GHz Q Noise
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LCDM Expectations

From LCDM we expect the CMB to
be E mode dominated, in this case

Then Q and U spectra are just
attenuations of E, being highly
suppressed when at a subset of
rotation angles.

We expect E to be isotropic on sky in
LCDM, so this suppression gives Q a
plus pattern and U a cross pattern.




Add to the mix: Planck at 7 frequencies and WMAP at 2 frequencies

Polarized galactic

30 GHz synchrotron
dominates
at low frequencies
44 GHz
70 GHz 23 GHz
100 GHz
33 GHz
143 GHz From arxiv 1212.5225
Polarized thermal
217 GHz emission (~20K) from
galactic dust aligned in
. e N magnetic fields
353 GHz - dominates
Dl at high frequencies

From arxiv 1502.01582



BK18 auto/cross
spectra between:
BICEP3 95GHz,
BICEP2/Keck
150GHz,

Keck 220GHz,
and Planck
353GHz

Black lines are
LCDM

Red lines are
LCDM+foreground

Blue panels
are BB
spectra
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Multicomponent likelihood analysis

Take the joint likelihood of all the spectra simultaneously
vs. model for BB that is the ACDM lensing expectation +
[/ parameter foreground model +r

foreground model = dust + synchrotron

' '

A o ASynch amplitudes @ =80

B B frequency spectral
dust synch indices

a a spatial spectral
dust synch indices

\ / dust/synch spatial

€ correlation
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BKP baseline
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Planck TT+lowP+lensing+ext
+BKP

no
B-modes

BKP

I <0.09 arxiv/1502.00612



Planck TT+lowP+lensing+ext
+BK14

no
B-modes

BK14

r <0.07 arxiv/1510.09217



Planck TT+T prior+lensing+BAO
+BK15

no
B-modes

BK15

I <0.06 arxiv/1810.05216



Planck TT,TE,EE+lowE+lensing
+BK18+BAO

no
B-modes

BK18

I <0.035 arxiv/2110.00483



Boomerang (2006)
CAPMAP (2008)
QUAD (2009) QUIET (2012)
WMAP (2013) BICEP1 (2014)
ABS (2018)
Polarbear (2019)

SPIDER (2021)
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BK18 ell=80 bandpower noise/signal
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What limits BK18?

s BK18 mainline simulations with dust and lensing give o(r)=0.009
% Running without foreground parameters on simulations where the
dust amplitude is set to zero gives a(r)=0.007

The above is as it should be - we have correctly tuned the relative
sensitivity of the 95/150/220 bands such that we don’t suffer much
penalty due to the presence of foregrounds.

** Running on simulations which contain no lensing gives o(r)=0.004

The sample variance of the achromatic lensing foreground is a major
limiting factor - we need delensing via high resolution measurements.

% Running without foreground parameters on simulations which have
neither dust or lensing gives o(r)=0.002
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Map Sensitivity [pK-arcmin]
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Delensing with SPT-3G data

B
A

N Can be used to reconstruct the
lensing deflection map...

1h00m 23h30m 22h30m

Dec (J2000)

...which can then be used to
calculate and remove the
s 1 lensing signal enabling a
s = deeper search for inflationary
gravitational waves




BA 220/270 - The De-Duster

e BICEP Array (BA) currently has 2 receivers observing the CMB full
time.
o BA 30/40 and BA 150
e BA 220/270 is the current work-in-progress for BA
o Focal plane currently has 3 modules, can hold 12 total
e BA mount has 4 receiver spots, last one is currently holding Keck
270.



BA 220/270 - The De-Duster




BA 220/270 Pics
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Conclusion + Next Steps

w >

BICEP Array looks to constrain cosmic inflation by measuring the polarization of

the CMB with high precision
The BICEP/Keck collaboration has been constraining the parameter space of

important cosmology results steadily since 2014.

Delensing with SPT-3G will solve the lensing problem
BA 220/270 will help with the dust foreground, these two advances combined

should significantly increase our sensitivity to r.



