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1 What is a Bayesian Inference Problem?

1.1 Models and Uncertainty

• The laws of physics give us models of physical systems

• Experimentally, we want to verify those models, or use them to understand
the underlying (unknown) parameters of the system

• If our experiment had 0 uncertainty, this would be easy, but all true ex-
periments will have some level of noise

1.2 Frequentism

• Suppose we have a model M of our system, which has parameters θ and
that there is some noise which we may also model as a random variable.
Then our data collected will be

d = s(θ,M) +N (1)

where s(θ,M) is the signal and N is the noise

• Given this, we may ask the question, given this model and parameters,
what the probability of the data we gather is. If we assume our model
to be perfect1, this is simply the probability of having a noise realization
which shifts the predicted signal to the resulting data. We can write
this as p(d|θ,M), that is the probability of getting the data given this
set of parameters and our model. We will generally make simplifying
assumptions about the noise (for example, in LIGO we assume all of our
noise is stationary and Gaussian) that will make this quantity (relatively)
easy to calculate.

1We can also account for an imperfect model by adding some parameterized systematic
offset, say C(λ) which we then model in conjunction with our physical model, though this
risks allowing over-fit of the data
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Figure 1: An Example of Noisy Data Given an Underlying Model

• From here, in frequentism we will usually ask what the probability of this
is versus the probability of the null hypothesis, that is an assumption that
the model is not correct (or not applicable). For example, if one is looking
for a noisy sine wave, it is very improbable that the noise would *happen*
to take on exactly the shape of a sine wave with your expected frequency
and amplitude, and so you may compute just how improbable this is.

• Example: Dice - if you are rolling a six sided die, you may ask whether it is
fair or not. The frequentist approach would be to roll it many times, and
evaluate the probability of the resulting distribution given an assumption
of a fair die. If this probability is sufficiently low, we would conclude that
the die is not fair. But if it isn’t fair, how do we determine what the actual
probabilities would be? If we can roll forever, it’s straightforward: given
enough rolls, we will eventually converge to the exact result, especially
since this is a discrete distribution. In nature, however, we can’t roll
forever, so we need something better

1.3 Bayesian Statistics

• The most important distinction in Bayesian statistics, which must be
made at the beginning, is that Bayesian probabilities are not the same

2



as frequentist probabilities. They constitute statements of confidence in
a conclusion, and cannot be directly mapped to the concept of repeated
experiments. However, they often map more effectively to the way we
treat probability in real life. The weather, for example, is essentially de-
terministic on short enough time scales: if there is an 80% chance of rain
tomorrow, that is not a statement that the true atmospheric configuration
at this moment produces rain in 24 hours 80% of the time, but rather that
our uncertainty in knowing about it means we are only 80% confident in
our conclusion. In physics, these are often the types of problems we will
be more interested in, especially in astrophysical contexts.

• The key point of Bayesian statistics is Bayes’ Theorem. In its simplest
form, it is a statement about true joint probabilities. The probability of
two events may be written

p(a, b) = p(a|b)p(b) = p(b|a)p(a) (2)

That is, the probability of a and b happening together is the probability
of a given b times the probability of b, and also the probability b given a
times the probability of a. Then rearranging

p(b|a) = p(a|b)p(b)
p(a)

(3)

This is all well and good, but we can also write it for our probability of
the data from before:

p(θ|d,M) =
p(d|θ,M)p(θ|M)

π(d|M)
(4)

So, our posterior distribution for the parameters given the model and the
data (that is, the confidence distribution after including the data) is the
probability of the data given the parameters and the model, times the
probability of the parameters given the model (the prior. denoted by π -
we’ll get to that), divided by the probability of producing the data given
any configuration under the model. This probability is simply the integral
over the parameter space, so if you perform this integral you will find that
(since probability is normalized)

Z =

∫
p(d|θ,M)π(θ|M)dθ (5)

• Priors are a sticky topic in Bayesian inference, because they necessarily
require some uninformed decision about what is or is not reasonable or
likely. Best practice is to usually choose something uninformative, such
as ”all configurations are equally likely” or ”vectors on a sphere will have
uniformly distributed magnitude and isotropic orientation.” They may
also be useful for other things though, such as testing underlying models.

3



Figure 2: Priors are Good, Actually
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Importantly, though, priors are again something which correspond much
better to the way we regularly deal with probability - we already have
assumptions about what and is not reasonable. It is important not to rely
on our priors to strongly - confirmation bias is the end of that road - but
they also help guide us where we should be looking.

1.4 Likelihood

• An important preliminary is to note that in (4) above the probablities are,
by definition, normalized. That’s not really something we can enforce a
priori on our analysis methods, so instead we’ll introduce the likelihood
L(θ,M) which is proportional to p(d|θ,M). Similarly, we will have the
evidence Z(M), which is proportional to p(d|M) by the same factor.
We’ll also frequently talk about lnL and lnZ, the natural logarithms of
these quantities, since these are much more tractable in computational
implementations. These get put together into the formula we’ll be using:

p(θ|d,M) =
L(θ|M)π(θ|M)

Z(M)
(6)

2 Nested Sampling

2.1 Sampling

• The task now set is to evaluate (6) over the entirety of parameter space
(that is, all possible values of θ. In most cases, there will be no clean
analytic solution, and so instead we will perform Bayesian sampling. Es-
sentially, we will seek to find some approximate of the left side of the
equation, and simultaneously will be performing the integral over the nu-
merator to determine the evidence. There are many methods for doing
this, but as the title indicates I’ll be focusing on Nested Sampling

2.2 Basics

• Nested sampling begins with the following reformulation of (5):

Z =

∫
LdX (7)

X here is the prior volume - dX = π(θ)dθ. Since the prior is a normalized
distribution, we have

∫
dX = 1. Now, we can arrange the parts of the

prior volume however we want for this integral, so lets arrange them by
increasing order:

X(λ) =

∫
L(θ)>λ

π(θ)dθ (8)
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This formulation has the interesting property that it is monotonically
decreasing: if λ = −∞, then it is equal to 1, and if λ > maxL then it is
equal to 0. This allows us to put meaningful integration bounds on (7)

Z =

∫ 1

0

L(X)dX (9)

where I’ve suppressed the chain rule on lambda.

• An example (from Skilling) is the following:

Figure 3: A Multidimensional Likelihood Distribution

Figure 4: The Corresponding Evidence Computation

• To compute a real integral, we can imagine this ordering:

0 < Xm < Xm−1 < ... < X2 < X1 < 1 (10)

Where increasing m corresponds to increasing likelihood per (8). Then we
can estimate:

Z ≈
m∑
i

wiLi (11)

Where wi are some associated prior weights Xi −Xi+1. Since X is mono-
tonically decreasing, left and right Riemann sums will bound the true
value from above and below respectively, and one may of course also ap-
ply higher order e.g. trapezoidal sums.

• Another important preliminary is the concept of information. Information
of the posterior against the prior is defined by

H =

∫
log

(
dP

dX

)
dX (12)
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Roughly, the volume of the true posterior will be a factor e−H less than
that of the prior. For high information (and it’s usually high), this means
the posterior occupies only a vanishingly small part of prior space. Thus,
it’s important that we sample in log prior space, rather than prior space
itself. This may be achieved by attempting to decrease the prior space by
some roughly constant amount each iteration, i.e. Xm = tmXm−1 where
tm < 1

2.3 The Algorithm

• We want to get this ordered set of points, with the prior volume always
decreasing. Because of how we ordered our X’s, we may do this by selecting
some point of higher likelihood, Lm+1 > Lm, and indeed doing so allows
us to skip the process of sorting entirely. Making an iid sample from the
prior space which satisfies this constraint will be equivalent to drawing a
new X with Xi = tiXi−1, so we will be sampling in log X as desired.

• To make this work, we will have N “live” points, which we will order by
likelihood. Then they will satisfy the recurrence relation

X0 = 1, Xi = tiXi−1,Pr(ti) = NtN−1
i (13)

with ti being the largest of N draws from Uniform(0, 1) a bit of calculus
gives

E(ln(ti)) = − 1

N
(14)

That is, ln(Xi+1) − ln(Xi) ≈ − 1
N , giving us a way to approximate the

weights required for our evidence sum.

• The algorithm itself:

1. Draw N live points

2. Order by likelihood

3. Initialize Z = 0, X0 = 1

4. While Converging (i = 1, i++):

(a) Choose worst of the live points

(b) assign it weight:

ln(wi) = ln(Xi) + lnLi (15)

where

ln(Xi) ≈ − i

N
(16)

and put it into the collection of ”dead” points

(c) increment the evidence by this weight
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(d) Draw a new iid sample from the prior, under the requirement
L > Li,

5. Once convergence ends, assign weights using prior mass −imax/N to
remaining live points, and add these to the evidence / dead points.

Remarkably, this algorithm has not only provided us a very good estimate
of the evidence, the dead points also form a posterior, since the weights
wi are exactly posterior weights from (6).

• A few steps of the above may stand out. The most important is, how do
we defined convergence? Generally, we want to be sure we have sampled
most of the evidence. We can approximate an upperbound on how much
evidence is left to accrue with:

∆Zi ≈ LmaxXi (17)

Then we can define a quantity dlogz, such that

∆lnZi = ln(Zi +∆Zi)− lnZi (18)

Generally it’s best to think of a fractional stopping criteria:

f ≤ ∆lnZi

ln(Zi +∆Zi)
= 1− lnZi

ln(Zi +∆Zi)
(19)

that is, when the remaining evidence to accrue constitutes less than f of
the total, stop (where f ∈ (0, 1), usually a number like 0.02)
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